Application Research On Real-Time Perception Of Device Performance Status
- URL: http://arxiv.org/abs/2409.03218v1
- Date: Thu, 5 Sep 2024 03:32:39 GMT
- Title: Application Research On Real-Time Perception Of Device Performance Status
- Authors: Zhe Wang, Zhen Wang, Jianwen Wu, Wangzhong Xiao, Yidong Chen, Zihua Feng, Dian Yang, Hongchen Liu, Bo Liang, Jiaojiao Fu,
- Abstract summary: The ability of performance features and profiles to describe the real-time performance status of devices was studied.
The accuracy of device performance status identification and prediction was compared with the performance of the profile features.
- Score: 9.145804504353125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to accurately identify the performance status of mobile devices and finely adjust the user experience, a real-time performance perception evaluation method based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) combined with entropy weighting method and time series model construction was studied. After collecting the performance characteristics of various mobile devices, the device performance profile was fitted by using PCA (principal component analysis) dimensionality reduction and feature engineering methods such as descriptive time series analysis. The ability of performance features and profiles to describe the real-time performance status of devices was understood and studied by applying the TOPSIS method and multi-level weighting processing. A time series model was constructed for the feature set under objective weighting, and multiple sensitivity (real-time, short-term, long-term) performance status perception results were provided to obtain real-time performance evaluation data and long-term stable performance prediction data. Finally, by configuring dynamic AB experiments and overlaying fine-grained power reduction strategies, the usability of the method was verified, and the accuracy of device performance status identification and prediction was compared with the performance of the profile features including dimensionality reduction time series modeling, TOPSIS method and entropy weighting method, subjective weighting, HMA method. The results show that accurate real-time performance perception results can greatly enhance business value, and this research has application effectiveness and certain forward-looking significance.
Related papers
- Tracing Optimization for Performance Modeling and Regression Detection [15.99435412859094]
A performance model analytically describes the relationship between the performance of a system and its runtime activities.
We propose statistical approaches to reduce tracing overhead by identifying and excluding performance-insensitive code regions.
Our approach is fully automated, making it ready to be used in production environments with minimal human effort.
arXiv Detail & Related papers (2024-11-26T16:11:55Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - VIRL: Volume-Informed Representation Learning towards Few-shot Manufacturability Estimation [0.0]
This work introduces VIRL, a Volume-Informed Representation Learning approach to pre-train a 3D geometric encoder.
The model pre-trained by VIRL shows substantial enhancements on demonstrating improved generalizability with limited data.
arXiv Detail & Related papers (2024-06-18T05:30:26Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - CVTT: Cross-Validation Through Time [0.0]
We argue that leaving out a method's continuous performance can lead to losing valuable insight into joint data-method effects.
Using the proposed technique, we conduct a detailed analysis of popular RecSys algorithms' performance against various metrics and datasets.
Our results show that model performance can vary significantly over time, and both data and evaluation setup can have a marked effect on it.
arXiv Detail & Related papers (2022-05-11T10:30:38Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
We propose WinIT, a framework for evaluating feature importance in time series prediction settings.
We demonstrate how the solution improves the appropriate attribution of features within time steps.
WinIT achieves 2.47x better performance than FIT and other feature importance methods on real-world clinical MIMIC-mortality task.
arXiv Detail & Related papers (2021-07-29T20:31:03Z) - Analytics of Longitudinal System Monitoring Data for Performance Prediction [0.7004662712880577]
We create data-driven models that can predict the performance of jobs waiting in the scheduler queue.
We analyze these prediction models in great detail to identify the features that are dominant predictors of performance.
We demonstrate that such models can be application-agnostic and can be used for predicting performance of applications that are not included in training.
arXiv Detail & Related papers (2020-07-07T13:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.