Towards training digitally-tied analog blocks via hybrid gradient computation
- URL: http://arxiv.org/abs/2409.03306v1
- Date: Thu, 5 Sep 2024 07:22:19 GMT
- Title: Towards training digitally-tied analog blocks via hybrid gradient computation
- Authors: Timothy Nest, Maxence Ernoult,
- Abstract summary: We introduce Feedforward-tied Energy-based Models (ff-EBMs)
We derive a novel algorithm to compute gradients end-to-end in ff-EBMs by backpropagating and "eq-propagating" through feedforward and energy-based parts respectively.
Our approach offers a principled, scalable, and incremental roadmap to gradually integrate self-trainable analog computational primitives into existing digital accelerators.
- Score: 1.800676987432211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power efficiency is plateauing in the standard digital electronics realm such that novel hardware, models, and algorithms are needed to reduce the costs of AI training. The combination of energy-based analog circuits and the Equilibrium Propagation (EP) algorithm constitutes one compelling alternative compute paradigm for gradient-based optimization of neural nets. Existing analog hardware accelerators, however, typically incorporate digital circuitry to sustain auxiliary non-weight-stationary operations, mitigate analog device imperfections, and leverage existing digital accelerators.This heterogeneous hardware approach calls for a new theoretical model building block. In this work, we introduce Feedforward-tied Energy-based Models (ff-EBMs), a hybrid model comprising feedforward and energy-based blocks accounting for digital and analog circuits. We derive a novel algorithm to compute gradients end-to-end in ff-EBMs by backpropagating and "eq-propagating" through feedforward and energy-based parts respectively, enabling EP to be applied to much more flexible and realistic architectures. We experimentally demonstrate the effectiveness of the proposed approach on ff-EBMs where Deep Hopfield Networks (DHNs) are used as energy-based blocks. We first show that a standard DHN can be arbitrarily split into any uniform size while maintaining performance. We then train ff-EBMs on ImageNet32 where we establish new SOTA performance in the EP literature (46 top-1 %). Our approach offers a principled, scalable, and incremental roadmap to gradually integrate self-trainable analog computational primitives into existing digital accelerators.
Related papers
- A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Neural Network Training with Asymmetric Crosspoint Elements [1.0773924713784704]
asymmetric conductance modulation of practical resistive devices critically degrades the classification of networks trained with conventional algorithms.
Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Hamiltonian Descent.
We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead.
arXiv Detail & Related papers (2022-01-31T17:41:36Z) - Prospects for Analog Circuits in Deep Networks [14.280112591737199]
Operations typically used in machine learning al-gorithms can be implemented by compact analog circuits.
With the recent advances in deep learning algorithms, focus has shifted to hardware digital accelerator designs.
This paper presents abrief review of analog designs that implement various machine learning algorithms.
arXiv Detail & Related papers (2021-06-23T14:49:21Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.