論文の概要: Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
- arxiv url: http://arxiv.org/abs/2409.03749v1
- Date: Thu, 5 Sep 2024 17:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:33:34.812461
- Title: Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
- Title(参考訳): 非線形パーセプトロンにおける教師付き強化学習のダイナミクス
- Authors: Christian Schmid, James M. Murray,
- Abstract要約: 学習を記述するフロー方程式を導出するために,データセット処理アプローチを用いる。
学習ルール(教師付きまたは強化学習,SL/RL)と入力データ分布が知覚者の学習曲線に及ぼす影響を特徴付ける。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
- 参考スコア(独自算出の注目度): 3.069335774032178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of a brain or a neural network to efficiently learn depends crucially on both the task structure and the learning rule. Previous works have analyzed the dynamical equations describing learning in the relatively simplified context of the perceptron under assumptions of a student-teacher framework or a linearized output. While these assumptions have facilitated theoretical understanding, they have precluded a detailed understanding of the roles of the nonlinearity and input-data distribution in determining the learning dynamics, limiting the applicability of the theories to real biological or artificial neural networks. Here, we use a stochastic-process approach to derive flow equations describing learning, applying this framework to the case of a nonlinear perceptron performing binary classification. We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve and the forgetting curve as subsequent tasks are learned. In particular, we find that the input-data noise differently affects the learning speed under SL vs. RL, as well as determines how quickly learning of a task is overwritten by subsequent learning. Additionally, we verify our approach with real data using the MNIST dataset. This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
- Abstract(参考訳): 脳やニューラルネットワークが効率的に学習する能力は、タスク構造と学習規則の両方に大きく依存する。
従来の研究は、学生-教師の枠組みや線形化された出力の仮定の下で、知覚論の比較的単純化された文脈で学習を記述する力学方程式を解析してきた。
これらの仮定は理論的な理解を促進する一方で、学習力学の決定における非線形性と入力データ分布の役割の詳細な理解を排除し、理論の実際の生物学的または人工知能ニューラルネットワークへの適用性を制限する。
本稿では,学習を記述する流れ方程式の導出に確率的手法を用いており,この枠組みを非線形パーセプトロンが二項分類を行う場合に適用する。
本研究では,学習ルール(教師付きあるいは強化学習,SL/RL)と入力データ分布が,知覚者の学習曲線および忘れる曲線に与える影響を,その後の課題として特徴づける。
特に、入力データノイズがSL対RLの学習速度に異なる影響を及ぼし、その後の学習によってタスクの学習がいかに早く書き直されるかを決定する。
さらに,本手法をMNISTデータセットを用いて実データで検証する。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
関連論文リスト
- From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
人工ネットワークでは、これらのモデルの有効性はタスク固有の表現を構築する能力に依存している。
以前の研究では、異なる初期化によって、表現が静的な遅延状態にあるネットワークや、表現が動的に進化するリッチ/フィーチャーな学習体制のいずれかにネットワークを配置できることが強調されていた。
これらの解は、豊かな状態から遅延状態までのスペクトルにわたる表現とニューラルカーネルの進化を捉えている。
論文 参考訳(メタデータ) (2024-09-22T23:19:04Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning [26.07501953088188]
本研究では,非平衡層固有の初期化分散と学習速度が特徴学習の度合いを決定するかを検討する。
分析の結果,保存量によって学習体制に影響を及ぼすことが示唆された。
我々は、この不均衡なリッチレジームが、深い有限幅ネットワークにおける特徴学習を駆動し、CNNにおける初期層の解釈可能性を促進し、階層データの学習の複雑さを減らし、モジュラー算術の時間を短縮することを示す。
論文 参考訳(メタデータ) (2024-06-10T10:42:37Z) - Unveiling the Dynamics of Information Interplay in Supervised Learning [10.122733373023074]
本研究では,行列情報理論を解析ツールとして用いて,教師付き学習プロセスにおけるデータ表現と分類ヘッドベクトル間の情報相互作用のダイナミクスを解析する。
実験の結果,MIRとHDRはニューラルネットワークで発生する多くの現象を効果的に説明できることがわかった。
教師付きおよび半教師付き学習において,MIRとHDRの損失項を導入し,サンプルと分類ヘッド間の情報相互作用を最適化する。
論文 参考訳(メタデータ) (2024-06-06T12:17:57Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
本研究では,言語固有の特定の分布特性が,2種類の学習のトレードオフや同時出現を制御していることを示す。
インコンテキスト学習は、誘導ヘッドの突然の出現によって駆動され、その後、インウェイト学習と競合する。
注意に基づくネットワークの急激な遷移は、ICLを実現するのに必要な多層演算の特定の連鎖によって生じると提案する。
論文 参考訳(メタデータ) (2023-12-03T20:53:41Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
監視学習によるオフライン強化学習(RL)は、さまざまな専門レベルのポリシーによって収集されたデータセットからロボットスキルを学ぶための、シンプルで効果的な方法である。
我々は、暗黙的なモデルが返却情報を利用して、固定されたデータセットからロボットスキルを取得するために、明示的なアルゴリズムにマッチするか、あるいは性能を向上するかを示す。
論文 参考訳(メタデータ) (2022-10-21T21:59:42Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Self-Adaptive Training: Bridging the Supervised and Self-Supervised
Learning [16.765461276790944]
自己適応型トレーニングは、追加の計算コストを課すことなく、モデル予測によってトレーニングプロセスを動的にキャリブレーションし、強化する統一型トレーニングアルゴリズムです。
ランダムノイズや敵対的な例など、破損したトレーニングデータの深層ネットワークのトレーニングダイナミクスを分析します。
分析の結果, モデル予測はデータ中の有用な情報量を拡大することが可能であり, 強調ラベル情報がない場合にも広く発生することがわかった。
論文 参考訳(メタデータ) (2021-01-21T17:17:30Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。