論文の概要: A Dataset for Mechanical Mechanisms
- arxiv url: http://arxiv.org/abs/2409.03763v1
- Date: Mon, 19 Aug 2024 19:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:41:23.424514
- Title: A Dataset for Mechanical Mechanisms
- Title(参考訳): メカニカル・メカニズムのデータセット
- Authors: Farshid Ghezelbash, Amir Hossein Eskandari, Amir J Bidhendi,
- Abstract要約: 本研究では,約9000枚の機械機構の画像とそれに対応する記述からなるデータセットを提案する。
データセットは2Dと3Dのスケッチの多様なコレクションで構成されており、関連性と品質を保証するために慎重にキュレートされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This study introduces a dataset consisting of approximately 9,000 images of mechanical mechanisms and their corresponding descriptions, aimed at supporting research in mechanism design. The dataset consists of a diverse collection of 2D and 3D sketches, meticulously curated to ensure relevance and quality. We demonstrate the application of this dataset by fine-tuning two models: 1) Stable Diffusion (for generating new mechanical designs), and 2) BLIP-2 (for captioning these designs). While the results from Stable Diffusion show promise, particularly in generating coherent 3D sketches, the model struggles with 2D sketches and occasionally produces nonsensical outputs. These limitations underscore the need for further development, particularly in expanding the dataset and refining model architectures. Nonetheless, this work serves as a step towards leveraging generative AI in mechanical design, highlighting both the potential and current limitations of these approaches.
- Abstract(参考訳): 本研究では,機構設計研究を支援するために,約9000枚の機械機構の画像とそれに対応する記述からなるデータセットを提案する。
データセットは2Dと3Dのスケッチの多様なコレクションで構成されており、関連性と品質を保証するために慎重にキュレートされている。
2つのモデルを微調整することで、このデータセットの応用を実証する。
1)安定拡散(新しい機械設計を作成するための)及び
2)BLIP-2(これらの意匠のキャプション用)
安定拡散の結果は、特にコヒーレントな3Dスケッチの生成において有望であるが、モデルは2Dスケッチと苦労し、時には非感覚的なアウトプットを生成する。
これらの制限は、特にデータセットの拡張とモデルアーキテクチャの精細化において、さらなる開発の必要性を浮き彫りにしている。
それでもこの研究は、機械設計における生成AIを活用するためのステップとして役立ち、これらのアプローチのポテンシャルと現在の限界の両方を強調している。
関連論文リスト
- Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes [65.22070581594426]
Implicit-Zoo"は、この分野の研究と開発を容易にするために、数千のGPUトレーニング日を必要とする大規模なデータセットである。
1)トランスモデルのトークン位置を学習すること、(2)NeRFモデルに関して直接3Dカメラが2D画像のポーズを取ること、である。
これにより、画像分類、セマンティックセグメンテーション、および3次元ポーズ回帰の3つのタスクすべてのパフォーマンスが向上し、研究のための新たな道が開けることになる。
論文 参考訳(メタデータ) (2024-06-25T10:20:44Z) - Generative Design through Quality-Diversity Data Synthesis and Language Models [5.196236145367301]
エンジニアリングアプリケーションにおける2つの基本的な課題は、ハイパフォーマンスで多様なデータセットの取得と、生成された設計における正確な制約への固執である。
アーキテクチャ設計におけるこれらの課題に取り組むために,最適化,制約満足度,言語モデルを組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:30:08Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction [74.49121940466675]
モノクローナルハンドヘルドオブジェクト再構成のためのCentroid-fixed dual-stream conditionalfusionを導入する。
まず、対象のセントロイドがずれることを避けるために、手動制約付きセントロイド固定パラダイムを用いる。
第2に、意味的および幾何学的に手動物体の相互作用をモデル化するための二重ストリームデノイザを導入する。
論文 参考訳(メタデータ) (2023-11-23T20:14:50Z) - Multi-plane denoising diffusion-based dimensionality expansion for
2D-to-3D reconstruction of microstructures with harmonized sampling [0.0]
本研究では,マイクロ3Diffと呼ばれる2次元から3次元の微細構造再構築のための新しい枠組みを提案する。
具体的には、この手法は2Dサンプルの生成に事前訓練されたDGMのみを必要とする。
DGMの逆マルコフ鎖からの偏差に対処するために、調和サンプリング法を開発した。
論文 参考訳(メタデータ) (2023-08-27T07:57:25Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
生成モデルは、新しいインスタンスを生成することによって観測データの分布を学習することを目的としている。
最近、研究者は焦点を2Dから3Dにシフトし始めた。
3Dデータの表現は、非常に大きな課題をもたらします。
論文 参考訳(メタデータ) (2022-10-27T17:59:50Z) - 3D-C2FT: Coarse-to-fine Transformer for Multi-view 3D Reconstruction [14.89364490991374]
本稿では,多視点特徴を符号化し,欠陥のある3Dオブジェクトを修正するための3次元粗大変換器(3D-C2FT)を提案する。
C2Fアテンション機構により、モデルは多視点情報の流れを学習し、3次元表面補正を粗くきめ細かな方法で合成することができる。
実験の結果,3D-C2FTは顕著な結果を示し,これらのデータセット上での競合モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-29T06:01:42Z) - Enhanced 3D Human Pose Estimation from Videos by using Attention-Based
Neural Network with Dilated Convolutions [12.900524511984798]
従来のネットワークや制約の形式が、どのように注意の枠組みに組み込むことができるのかを体系的な設計で示します。
拡張畳み込みのマルチスケール構造により,時間受容場を適応させることにより,これを実現する。
提案手法は,Human3.6Mデータセット上での関節位置誤差の平均を33.4mmに減らし,最先端性能を達成し,既存の手法よりも優れる。
論文 参考訳(メタデータ) (2021-03-04T17:26:51Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。