論文の概要: OpenCap markerless motion capture estimation of lower extremity kinematics and dynamics in cycling
- arxiv url: http://arxiv.org/abs/2409.03766v2
- Date: Mon, 18 Nov 2024 21:08:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:33:43.945804
- Title: OpenCap markerless motion capture estimation of lower extremity kinematics and dynamics in cycling
- Title(参考訳): OpenCapマーカーレスモーションキャプチャーによるサイクリングにおける下肢運動学とダイナミックスの推定
- Authors: Reza Kakavand, Reza Ahmadi, Atousa Parsaei, W. Brent Edwards, Amin Komeili,
- Abstract要約: マーカレスモーションキャプチャは、従来のマーカーベースのシステムよりもいくつかの利点がある。
システムは人体のランドマークを直接検出することができ、手作業による処理やマーカーの配置に伴うエラーを減らすことができる。
本研究では,マーカーレスモーションキャプチャシステムであるOpenCapと,サイクリングバイオメカニクス評価における従来のマーカーベースシステムとの比較を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Markerless motion capture offers several benefits over traditional marker-based systems by eliminating the need for physical markers, which are prone to misplacement and artifacts. Utilizing computer vision and deep learning algorithms, markerless systems can directly detect human body landmarks, reducing manual processing and errors associated with marker placement. These systems are adaptable, able to track user-defined features, and practical for real-world applications using consumer-grade devices such as smartphone cameras. This study compares the performance of OpenCap, a markerless motion capture system, with traditional marker-based systems in assessing cycling biomechanics. Ten healthy adults participated in experiments to capture sagittal hip, knee, and ankle kinematics and dynamics using both methods. OpenCap used videos from smartphones and integrated computer vision and musculoskeletal simulations to estimate 3D kinematics. Results showed high agreement between the two systems, with no significant differences in kinematic and kinetic measurements for the hip, knee, and ankle. The correlation coefficients exceeded 0.98, indicating very strong consistency. Errors were minimal, with kinematic errors under 4 degrees and kinetic errors below 5 Nm. This study concludes that OpenCap is a viable alternative to marker-based motion capture, offering comparable precision without extensive setup for hip (flexion/extension), knee (flexion/extension), and ankle (dorsiflexion/plantarflexion) joints. Future work should aim to enhance the accuracy of ankle joint measurements and extend analyses to 3D kinematics and kinetics for comprehensive biomechanical assessments.
- Abstract(参考訳): マーカーレスモーションキャプチャは、物理的マーカーの必要性を排除することで、従来のマーカーベースのシステムよりもいくつかの利点を提供する。
コンピュータビジョンとディープラーニングアルゴリズムを利用することで、マーカーレスシステムは人間の身体のランドマークを直接検出し、マーカー配置に関連する手作業の処理とエラーを減らすことができる。
これらのシステムは適応可能であり、ユーザ定義の機能を追跡することができ、スマートフォンカメラのようなコンシューマグレードのデバイスを使用して現実世界のアプリケーションに実用的である。
本研究では,マーカーレスモーションキャプチャシステムであるOpenCapと,サイクリングバイオメカニクス評価における従来のマーカーベースシステムとの比較を行った。
健常成人10名を対象に, 両法を用いて, 矢状股関節, 膝, 足首運動学, 運動学の計測実験を行った。
OpenCapはスマートフォンのビデオと統合コンピュータビジョンと筋骨格シミュレーションを使って3Dキネマティクスを推定した。
その結果, 両システム間には高い一致性を示し, 股関節, 膝, 足首の運動学的, 運動学的測定に有意差は認められなかった。
相関係数は0.98を超え、非常に強い一貫性を示した。
誤差は最小限であり, 運動誤差は4度以下, 運動誤差は5Nm以下であった。
本研究は、OpenCapがマーカーベースのモーションキャプチャーの代替として有効であり、股関節(屈曲/伸展)、膝(屈曲/伸展)、足関節(背屈/足関節屈曲)の広範囲なセットアップを伴わない精度を提供する。
今後,足関節計測の精度を高め,解析を3次元運動学・運動学に拡張し,総合的な生体力学的評価を行う。
関連論文リスト
- Real-time, accurate, and open source upper-limb musculoskeletal analysis using a single RGBD camera [0.14999444543328289]
バイオメカニカルバイオフィードバックは、リハビリテーションを強化し、より客観的なタスク評価を提供する。
我々のオープンソースアプローチは、単一の低コストのRGBDカメラを使用して、高忠実な上肢キネマティクスのためのユーザフレンドリーなソリューションを提供します。
論文 参考訳(メタデータ) (2024-06-14T13:20:05Z) - Differentiable Biomechanics Unlocks Opportunities for Markerless Motion
Capture [2.44755919161855]
微分物理学シミュレータはGPU上で加速することができる。
これらのシミュレータは,逆運動学とマーカーレスモーションキャプチャーデータとの適合性を示す。
論文 参考訳(メタデータ) (2024-02-27T04:18:15Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
2つの入力ビューから3Dキネマティクスを直接出力するバイオメカニクス対応ネットワークを提案する。
実験により, 提案手法は, 合成データにのみ訓練されたものであり, 従来の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-20T17:33:40Z) - Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower
Body Motion Estimation Using Smart Textile [2.2008680042670123]
本稿では,人間のポーズ推定のために,Intelligent Knee Sleevesの新たなペアを用いてベンチマークを収集したマルチモーダルデータセットを提案する。
本システムは,Knee Sleevesの時系列データと,可視化されたモーションキャプチャーカメラシステムからの対応する地上真実ラベルからなる同期データセットを利用する。
我々はこれらを用いて、異なる活動を行う個人のウェアラブルデータのみに基づく3次元人体モデルを生成する。
論文 参考訳(メタデータ) (2023-10-02T00:34:21Z) - QuestSim: Human Motion Tracking from Sparse Sensors with Simulated
Avatars [80.05743236282564]
人間の身体の動きのリアルタイム追跡は、AR/VRにおける没入感のある体験に不可欠である。
本稿では,HMDと2つのコントローラから疎信号を取り出す強化学習フレームワークを提案する。
一つのポリシーは、多様な移動スタイル、異なる体の大きさ、新しい環境に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:25:54Z) - SOMA: Solving Optical Marker-Based MoCap Automatically [56.59083192247637]
我々はSOMAと呼ばれる新しいニューラルネットワークを訓練し、モカプポイントの雲をさまざまな数のポイントで取り、それらを大規模にラベル付けする。
Somaは、3Dボディの空間構造を学ぶために、自己注意要素を積み重ねたアーキテクチャを利用する。
4つのデータセットにまたがる8時間以上のアーカイブモキャップデータを自動的にラベル付けします。
論文 参考訳(メタデータ) (2021-10-09T02:27:27Z) - Neural Monocular 3D Human Motion Capture with Physical Awareness [76.55971509794598]
物理的に可塑性なマーカーレス3次元モーションキャプチャのための新しいトレーニングシステムを提案する。
人間のモーションキャプチャのためのほとんどのニューラルな手法とは異なり、我々のアプローチは物理的および環境的な制約を認識している。
様々な場面でインタラクティブなフレームレートで、滑らかで物理的に原理化された3dモーションを生成する。
論文 参考訳(メタデータ) (2021-05-03T17:57:07Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Human Leg Motion Tracking by Fusing IMUs and RGB Camera Data Using
Extended Kalman Filter [4.189643331553922]
IMUベースのシステムとMarkerベースのモーショントラッキングシステムは、実装コストが低く軽量であるため、ムーブメントを追跡する最も一般的な方法である。
本稿では、カメラマーカーシステムデータと融合したIMUセンサデータを用いて、四元数に基づく拡張カルマンフィルタを用いて、人間の足のセグメントの動きを復元する手法を提案する。
論文 参考訳(メタデータ) (2020-11-01T17:54:53Z) - PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time [89.68248627276955]
シングルカラーカメラからのマーカレス3Dモーションキャプチャは、大きな進歩を遂げた。
しかし、これは非常に困難な問題であり、深刻な問題である。
我々はPhysCapについて紹介する。PhysCapは物理的に可塑性でリアルタイムでマーカーのない人間の3Dモーションキャプチャのための最初のアルゴリズムである。
論文 参考訳(メタデータ) (2020-08-20T10:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。