論文の概要: Interpretable Cyber Threat Detection for Enterprise Industrial Networks: A Computational Design Science Approach
- arxiv url: http://arxiv.org/abs/2409.03798v1
- Date: Wed, 4 Sep 2024 19:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:50:10.783065
- Title: Interpretable Cyber Threat Detection for Enterprise Industrial Networks: A Computational Design Science Approach
- Title(参考訳): 企業用ネットワークの解釈可能なサイバー脅威検出:計算設計科学アプローチ
- Authors: Prabhat Kumar, A. K. M. Najmul Islam,
- Abstract要約: 我々は、IS計算設計科学パラダイムを用いて、企業レベルのISのための2段階のサイバー脅威検出システムを開発した。
第1段階は、改良された生成逆ネットワークを用いて合成産業ネットワークデータを生成する。
第2段階は、新しい双方向ゲートリカレントユニットと、効果的な脅威検出のための改良された注意機構を開発する。
- 参考スコア(独自算出の注目度): 1.935143126104097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise industrial networks face threats that risk data and operations. However, designing efficient threat detection system is challenging due to data scarcity, especially where privacy is a concern. The complexity of enterprise industrial network data adds to this challenge, causing high false positives and interpretation issues. Towards this, we use IS computational design science paradigm to develop a two-stage cyber threat detection system for enterprise-level IS that are both secure and capable of adapting to evolving technological and business environments. The first stage generates synthetic industrial network data using a modified generative adversarial network. The second stage develops a novel bidirectional gated recurrent unit and a modified attention mechanism for effective threat detection. We also use shapley additive explanations and a decision tree technique for enhancing interpretability. Our analysis on two public datasets shows the frameworks high precision in threat detection and offers practical cybersecurity solutions and methodological advancements.
- Abstract(参考訳): エンタープライズ産業ネットワークは、データと運用を危険にさらす脅威に直面している。
しかし、特にプライバシーが懸念されるデータ不足のため、効率的な脅威検出システムの設計は困難である。
エンタープライズ産業用ネットワークデータの複雑さは、この課題に重きを置き、偽陽性と解釈の問題を引き起こす。
そこで我々は、IS計算設計科学パラダイムを用いて、企業レベルのISのための二段階のサイバー脅威検出システムを開発し、技術・ビジネス環境の進化に適応することができる。
第1段階は、改良された生成逆ネットワークを用いて合成産業ネットワークデータを生成する。
第2段階は、新しい双方向ゲートリカレントユニットと、効果的な脅威検出のための改良された注意機構を開発する。
また, キャラクタビリティ向上のために, シェープな付加的な説明や決定木手法も用いている。
2つの公開データセットの解析は、脅威検出の高精度なフレームワークを示し、実用的なサイバーセキュリティソリューションと方法論の進歩を提供する。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
論文 参考訳(メタデータ) (2024-08-15T11:32:46Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
バックドアは、ディープニューラルネットワーク(DNN)上の悪意あるアクターと、データ処理のためのクラウドサービスによって悪用される。
提案手法は高度テンソル分解アルゴリズムを利用して,事前学習したDNNの重みを慎重に解析し,バックドアモデルとクリーンモデルとの区別を行う。
この進歩は、ネットワークシステムにおけるディープラーニングとAIのセキュリティを強化し、新興技術の脅威の進化に対して不可欠なサイバーセキュリティを提供する。
論文 参考訳(メタデータ) (2024-03-13T03:10:11Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
本稿では,異常検出に焦点をあてた,サイバーセキュリティ向上のための革新的な注意-GANフレームワークを提案する。
提案手法は、多様なリアルな合成攻撃シナリオを生成し、データセットを充実させ、脅威識別を改善することを目的としている。
GAN(Generative Adversarial Networks)と注意機構を統合することが提案手法の重要な特徴である。
attention-GANフレームワークは先駆的なアプローチとして登場し、高度なサイバー防御戦略のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-02-25T01:10:55Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - TMAP: A Threat Modeling and Attack Path Analysis Framework for Industrial IoT Systems (A Case Study of IoM and IoP) [2.9922995594704984]
スマートファクトリにセキュアな産業制御生産システム(ICPS)を配備するには、サイバー脅威とリスクに対処する必要がある。
サイバー物理システム(CPS)における脅威モデリングの現在のアプローチはアドホックで非効率である。
本稿では,予測可能な攻撃ベクトルを同定し,攻撃経路を評価し,各ベクトルの大きさを評価することを目的とした,新しい定量的脅威モデリング手法を提案する。
論文 参考訳(メタデータ) (2023-12-23T18:32:53Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Extending Isolation Forest for Anomaly Detection in Big Data via K-Means [8.560480662599407]
産業用ビッグデータシナリオにおける異常検出のためのK-MeansアルゴリズムとIsolation Forestを組み合わせた新しい教師なし機械学習アプローチを提案する。
Apache Sparkフレームワークを使用して、大規模なネットワークトラフィックデータでトレーニングされた提案モデルを実装しています。
提案手法は, 産業設備におけるリアルタイム異常検出に有効であることがわかった。
論文 参考訳(メタデータ) (2021-04-27T16:21:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。