Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response
- URL: http://arxiv.org/abs/2409.03806v1
- Date: Thu, 5 Sep 2024 11:18:34 GMT
- Title: Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response
- Authors: Yudara Kularathne, Prathapa Janitha, Sithira Ambepitiya,
- Abstract summary: The 2024 Mpox outbreak, particularly severe in Africa with clade 1b emergence, has highlighted critical gaps in diagnostic capabilities in resource-limited settings.
This study aimed to develop and validate an artificial intelligence (AI)-driven, on-device screening tool for Mpox, designed to function offline in low-resource environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: The 2024 Mpox outbreak, particularly severe in Africa with clade 1b emergence, has highlighted critical gaps in diagnostic capabilities in resource-limited settings. This study aimed to develop and validate an artificial intelligence (AI)-driven, on-device screening tool for Mpox, designed to function offline in low-resource environments. Methods: We developed a YOLOv8n-based deep learning model trained on 2,700 images (900 each of Mpox, other skin conditions, and normal skin), including synthetic data. The model was validated on 360 images and tested on 540 images. A larger external validation was conducted using 1,500 independent images. Performance metrics included accuracy, precision, recall, F1-score, sensitivity, and specificity. Findings: The model demonstrated high accuracy (96%) in the final test set. For Mpox detection, it achieved 93% precision, 97% recall, and an F1-score of 95%. Sensitivity and specificity for Mpox detection were 97% and 96%, respectively. Performance remained consistent in the larger external validation, confirming the model's robustness and generalizability. Interpretation: This AI-driven screening tool offers a rapid, accurate, and scalable solution for Mpox detection in resource-constrained settings. Its offline functionality and high performance across diverse datasets suggest significant potential for improving Mpox surveillance and management, particularly in areas lacking traditional diagnostic infrastructure.
Related papers
- Attention Based Feature Fusion Network for Monkeypox Skin Lesion Detection [0.09642500063568188]
Recent monkeypox outbreak has raised significant public health concerns.
Deep learning algorithms can be used to identify diseases, including COVID-19.
We introduce a lightweight model that merges two pre-trained architectures to classify human monkeypox disease.
arXiv Detail & Related papers (2024-08-13T05:21:03Z) - Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis [3.1851272788128644]
Existing AI-based Parkinson's Disease detection methods primarily focus on unimodal analysis of motor or speech tasks.
We propose a novel Uncertainty-calibrated Fusion Network (UFNet) that leverages this multimodal data to enhance diagnostic accuracy.
UFNet significantly outperformed single-task models in terms of accuracy, area under the ROC curve (AUROC), and sensitivity while maintaining non-inferior specificity.
arXiv Detail & Related papers (2024-06-21T04:02:19Z) - Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images [41.002573031087856]
We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography ( OCT)
FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%.
Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%)
arXiv Detail & Related papers (2024-06-18T03:04:52Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
We propose a self-conditioned diffusion model termed DiffChest and train it on a dataset of chest radiographs.
DiffChest explains classifications on a patient-specific level and visualizes the confounding factors that may mislead the model.
Our findings highlight the potential of pretraining based on diffusion models in medical image classification.
arXiv Detail & Related papers (2023-09-29T10:38:08Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
We establish an uncertainty-inspired open-set (UIOS) model, which was trained with fundus images of 9 retinal conditions.
Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set.
UIOS correctly predicted high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images.
arXiv Detail & Related papers (2023-04-08T10:47:41Z) - Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox [7.381293390784665]
"Super Monitoring" is a real-time visualization technique employing artificial intelligence (AI) and Internet technology.
mpox-AISM integrates deep learning models, data augmentation, self-supervised learning, and cloud services.
It achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin.
arXiv Detail & Related papers (2023-03-17T05:27:16Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
We formulate the self- and report-completion as two complementary objectives and present a unified framework based on masked record modeling (MRM)
MRM reconstructs masked image patches and masked report tokens following a multi-task scheme to learn knowledge-enhanced semantic representations.
Specifically, we find that MRM offers superior performance in label-efficient fine-tuning.
arXiv Detail & Related papers (2023-01-30T18:33:32Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.