Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox
- URL: http://arxiv.org/abs/2303.09780v4
- Date: Sun, 16 Jun 2024 02:24:15 GMT
- Title: Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox
- Authors: Yubiao Yue, Minghua Jiang, Xinyue Zhang, Jialong Xu, Huacong Ye, Fan Zhang, Zhenzhang Li, Yang Li,
- Abstract summary: "Super Monitoring" is a real-time visualization technique employing artificial intelligence (AI) and Internet technology.
mpox-AISM integrates deep learning models, data augmentation, self-supervised learning, and cloud services.
It achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin.
- Score: 7.381293390784665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Swift and accurate diagnosis for earlier-stage monkeypox (mpox) patients is crucial to avoiding its spread. However, the similarities between common skin disorders and mpox and the need for professional diagnosis unavoidably impaired the diagnosis of earlier-stage mpox patients and contributed to mpox outbreak. To address the challenge, we proposed "Super Monitoring", a real-time visualization technique employing artificial intelligence (AI) and Internet technology to diagnose earlier-stage mpox cheaply, conveniently, and quickly. Concretely, AI-mediated "Super Monitoring" (mpox-AISM) integrates deep learning models, data augmentation, self-supervised learning, and cloud services. According to publicly accessible datasets, mpox-AISM's Precision, Recall, Specificity, and F1-score in diagnosing mpox reach 99.3%, 94.1%, 99.9%, and 96.6%, respectively, and it achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin. With the Internet and communication terminal, mpox-AISM has the potential to perform real-time and accurate diagnosis for earlier-stage mpox in real-world scenarios, thereby preventing mpox outbreak.
Related papers
- Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response [0.0]
The 2024 Mpox outbreak, particularly severe in Africa with clade 1b emergence, has highlighted critical gaps in diagnostic capabilities in resource-limited settings.
This study aimed to develop and validate an artificial intelligence (AI)-driven, on-device screening tool for Mpox, designed to function offline in low-resource environments.
arXiv Detail & Related papers (2024-09-05T11:18:34Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction.
utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine.
LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores.
arXiv Detail & Related papers (2023-11-09T15:21:10Z) - Entropy-based machine learning model for diagnosis and monitoring of
Parkinson's Disease in smart IoT environment [0.0]
Fuzzy Entropy performed the best in diagnosing and monitoring PD using rs-EEG.
With a fewer number of features, we achieved a maximum classification accuracy (ARKF) of 99.9%.
Lower-performance smart ML sensors can be used in IoT environments for enhances human resilience to PD.
arXiv Detail & Related papers (2023-08-28T08:20:57Z) - Ultrafast-and-Ultralight ConvNet-Based Intelligent Monitoring System for Diagnosing Early-Stage Mpox Anytime and Anywhere [4.393125661498784]
Fast-MpoxNet, with only 0.27M parameters, can process input images at 68 frames per second (FPS) on the CPU.
Mpox-AISM V2 can rapidly and accurately diagnose mpox and can be easily deployed in various scenarios to offer the public real-time mpox diagnosis services.
arXiv Detail & Related papers (2023-08-25T17:06:30Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - COVID-CAPS: A Capsule Network-based Framework for Identification of
COVID-19 cases from X-ray Images [34.93885932923011]
Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at the end of the 2nd decade of the 21st century.
Early diagnosis of COVID-19 enables health care professionals and government authorities to break the chain of transition and flatten the epidemic curve.
There has been an urgent surge of interest to develop Deep Neural Network (DNN)-based diagnosis solutions, mainly based on Convolutional Neural Networks (CNNs)
The paper presents an alternative modeling framework based on Capsule Networks, referred to as the COVID-CAPS, being capable of handling small datasets.
arXiv Detail & Related papers (2020-04-06T14:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.