論文の概要: MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification
- arxiv url: http://arxiv.org/abs/2409.04104v1
- Date: Fri, 6 Sep 2024 08:14:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:25:56.275870
- Title: MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification
- Title(参考訳): MixNet: モーター画像脳波分類における包括的パイプラインへの古典的・近代的アプローチの参加力
- Authors: Phairot Autthasan, Rattanaphon Chaisaen, Huy Phan, Maarten De Vos, Theerawit Wilaiprasitporn,
- Abstract要約: MixNetは、MIデータからのスペクトル空間信号を利用して制限を克服するために設計された新しい分類フレームワークである。
適応的な勾配ブレンディングを実装し、複数の損失重みを同時に調整し、その一般化/過度化傾向に基づいて各タスクの学習速度を調整する。
結果は、MixNetが主観的および非依存的な設定において、すべての最先端のアルゴリズムを一貫して上回っていることを示している。
- 参考スコア(独自算出の注目度): 12.227138730377503
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in deep learning (DL) have significantly impacted motor imagery (MI)-based brain-computer interface (BCI) systems, enhancing the decoding of electroencephalography (EEG) signals. However, most studies struggle to identify discriminative patterns across subjects during MI tasks, limiting MI classification performance. In this article, we propose MixNet, a novel classification framework designed to overcome this limitation by utilizing spectral-spatial signals from MI data, along with a multitask learning architecture named MIN2Net, for classification. Here, the spectral-spatial signals are generated using the filter-bank common spatial patterns (FBCSPs) method on MI data. Since the multitask learning architecture is used for the classification task, the learning in each task may exhibit different generalization rates and potential overfitting across tasks. To address this issue, we implement adaptive gradient blending, simultaneously regulating multiple loss weights and adjusting the learning pace for each task based on its generalization/overfitting tendencies. Experimental results on six benchmark data sets of different data sizes demonstrate that MixNet consistently outperforms all state-of-the-art algorithms in subject-dependent and -independent settings. Finally, the low-density EEG MI classification results show that MixNet outperforms all state-of-the-art algorithms, offering promising implications for Internet of Thing (IoT) applications, such as lightweight and portable EEG wearable devices based on low-density montages.
- Abstract(参考訳): 近年のディープラーニング(DL)の進歩は、運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)システムに大きな影響を与え、脳波(EEG)信号の復号性を高めている。
しかし、ほとんどの研究では、MIタスク中の被差別者の識別に苦労し、MI分類性能を制限している。
本稿では、MIデータからのスペクトル空間信号とMIN2Netというマルチタスク学習アーキテクチャを利用して、この制限を克服する新しい分類フレームワークであるMixNetを提案する。
ここでは、MIデータ上のフィルタバンク共通空間パターン(FBCSP)法を用いてスペクトル空間信号を生成する。
マルチタスク学習アーキテクチャは、分類タスクに使用されるため、各タスクにおける学習は、タスク間の一般化率と潜在的な過度なオーバーフィットを示す可能性がある。
この問題に対処するために、適応的な勾配ブレンディングを実装し、複数の損失重みを同時に調整し、その一般化/過度化傾向に基づいて各タスクの学習速度を調整する。
6つのベンチマークデータセットの異なるデータサイズに関する実験結果から、MixNetは主観的および非依存的な設定において、すべての最先端アルゴリズムを一貫して上回っていることが示された。
最後に、低密度のEEG MI分類の結果は、MixNetがすべての最先端アルゴリズムを上回り、低密度のモンタージュに基づいた軽量でポータブルなEEGウェアラブルデバイスなど、IoT(Internet of Thing)アプリケーションに有望な影響を提供することを示している。
関連論文リスト
- Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - LMDA-Net:A lightweight multi-dimensional attention network for general
EEG-based brain-computer interface paradigms and interpretability [2.3945862743903916]
LMDA-Netと呼ばれる,軽量な多次元アテンションネットワークを提案する。
EEG信号用に設計された2つの新しいアテンションモジュールを組み込むことで、LMDA-Netは複数の次元の特徴を効果的に統合できる。
LMDA-Netは、分類精度とボラティリティの予測の観点から、他の代表的手法よりも優れている。
論文 参考訳(メタデータ) (2023-03-29T02:35:02Z) - ConTraNet: A single end-to-end hybrid network for EEG-based and
EMG-based human machine interfaces [0.0]
本稿では,CNN と Transformer アーキテクチャをベースとした ConTraNet という単一ハイブリッドモデルを提案する。
ConTraNetは、異なるHMIパラダイムから異なる特徴を学習し、アートアルゴリズムの現在の状態と同等に一般化する。
論文 参考訳(メタデータ) (2022-06-21T18:55:50Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - A channel attention based MLP-Mixer network for motor imagery decoding
with EEG [9.41450903202306]
CNNとその変異体は脳波(EEG)ベースの運動画像(MI)デコードタスクにうまく応用されている。
このような問題に対処するため,脳波を用いたMIデコーディングにおいて,新しいチャネルアテンションベースミキサネットワーク(CAMLP-Net)を提案する。
論文 参考訳(メタデータ) (2021-10-21T07:21:33Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)システムは、コミュニケーションと制御の代替手段を提供するためにますます採用されています。
信頼できるBCIシステムを得るには、脳信号からMIを正確に分類することが不可欠です。
ディープラーニングアプローチは、標準的な機械学習技術の有効な代替手段として現れ始めている。
論文 参考訳(メタデータ) (2021-05-17T14:57:13Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor
Imagery EEG Classification [10.773708402778025]
脳波のリズムは被験者に特有のものであり、時間とともに様々な変化が起こる。
本稿では,この課題に対処するための新しいエンドツーエンドマルチタスク学習であるMIN2Netを提案する。
深層学習をマルチタスクオートエンコーダに統合し,脳波からコンパクトかつ識別可能な潜在表現を学習する。
論文 参考訳(メタデータ) (2021-02-07T15:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。