An optically accelerated extreme learning machine using hot atomic vapors
- URL: http://arxiv.org/abs/2409.04312v1
- Date: Fri, 6 Sep 2024 14:36:56 GMT
- Title: An optically accelerated extreme learning machine using hot atomic vapors
- Authors: Pierre Azam, Robin Kaiser,
- Abstract summary: We present a new design combining the strong and tunable nonlinear properties of a light beam propagating through a hot atomic vapor with an Extreme Learning Machine model.
We numerically and experimentally demonstrate the enhancement of the training using such free-space nonlinear propagation on a MNIST image classification task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is becoming a widely used technique with a impressive growth due to the diversity of problem of societal interest where it can offer practical solutions. This increase of applications and required resources start to become limited by present day hardware technologies. Indeed, novel machine learning subjects such as large language models or high resolution image recognition raise the question of large computing time and energy cost of the required computation. In this context, optical platforms have been designed for several years with the goal of developing more efficient hardware for machine learning. Among different explored platforms, optical free-space propagation offers various advantages: parallelism, low energy cost and computational speed. Here, we present a new design combining the strong and tunable nonlinear properties of a light beam propagating through a hot atomic vapor with an Extreme Learning Machine model. We numerically and experimentally demonstrate the enhancement of the training using such free-space nonlinear propagation on a MNIST image classification task. We point out different experimental hyperparameters that can be further optimized to improve the accuracy of the platform.
Related papers
- Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Optical Extreme Learning Machines with Atomic Vapors [0.3069335774032178]
Extreme learning machines explore nonlinear random projections to perform computing tasks on high-dimensional output spaces.
This manuscript explores the possibility of using atomic gases in near-resonant conditions to implement an optical extreme learning machine.
Our results suggest that these systems have the potential not only to work as an optical extreme learning machine but also to perform these computations at the few-photon level.
arXiv Detail & Related papers (2024-01-08T10:19:28Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Deep Learning with Passive Optical Nonlinear Mapping [9.177212626554505]
We introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping.
We show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information.
Our findings pave the way for novel algorithms and architectural designs for optical computing.
arXiv Detail & Related papers (2023-07-17T15:15:47Z) - Photonic reservoir computing enabled by stimulated Brillouin scattering [0.0]
A new computing platform based on the photonic reservoir computing architecture exploiting the non-linear wave-optical dynamics of the stimulated Brillouin scattering is reported.
It is readily suited for use in conjunction with high performance optical multiplexing techniques to enable real-time artificial intelligence.
arXiv Detail & Related papers (2023-02-15T14:57:30Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems.
We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.
arXiv Detail & Related papers (2022-01-29T01:03:29Z) - Scalable Optical Learning Operator [0.2399911126932526]
The presented framework overcomes the energy scaling problem of existing systems without classifying speed.
We numerically and experimentally showed the ability of the method to execute several different tasks with accuracy comparable to a digital implementation.
Our results indicate that a powerful supercomputer would be required to duplicate the performance of the multimode fiber-based computer.
arXiv Detail & Related papers (2020-12-22T23:06:59Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.