Quantum-enhanced dark matter detection with in-cavity control: mitigating the Rayleigh curse
- URL: http://arxiv.org/abs/2409.04656v1
- Date: Fri, 6 Sep 2024 23:37:01 GMT
- Title: Quantum-enhanced dark matter detection with in-cavity control: mitigating the Rayleigh curse
- Authors: Haowei Shi, Anthony J. Brady, Wojciech Górecki, Lorenzo Maccone, Roberto Di Candia, Quntao Zhuang,
- Abstract summary: A major approach of searching for dark matter relies on detecting feeble noise in microwave cavities.
We propose an in-situ protocol to mitigate the Rayleigh curse.
Thanks to the recent advance in magnetic-field-resilient in-cavity squeezing, the proposed protocol is compatible with axion detection scenario.
- Score: 0.31410859223862103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nature of dark matter is a fundamental puzzle in modern physics. A major approach of searching for dark matter relies on detecting feeble noise in microwave cavities. However, the quantum advantages of common quantum resources such as squeezing are intrinsically limited by the Rayleigh curse -- a constant loss places a sensitivity upper bound on these quantum resources. In this paper, we propose an in-situ protocol to mitigate such Rayleigh limit. The protocol consists of three steps: in-cavity quantum state preparation, axion accumulation with tunable time duration, and measurement. For the quantum source, we focus on the single-mode squeezed state (SMSS), and the entanglement-assisted case using signal-ancilla pairs in two-mode squeezed state (TMSS), where the ancilla does not interact with the axion. From quantum Fisher information rate evaluation, we derive the requirement of cavity quality factor, thermal noise level and squeezing gain for quantum advantage. When the squeezing gain becomes larger, the optimal axion accumulation time decreases to reduce loss and mitigate the Rayleigh curse -- the quantum advantage keeps increasing with the squeezing gain. Overall, we find that TMSS is more sensitive in the low temperature limit. In the case of SMSS, as large gain is required for advantage over vacuum, homodyne is sufficient to achieve optimality. For TMSS, anti-squeezing and photon counting is necessary to be optimal. Thanks to the recent advance in magnetic-field-resilient in-cavity squeezing and rapidly coupling out for photon counting, the proposed protocol is compatible with axion detection scenario.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Heisenberg-Limited Quantum Lidar for Joint Range and Velocity Estimation [0.4604003661048266]
We propose a quantum lidar protocol to jointly estimate the range and velocity of a target by illuminating it with a single beam of pulsed displaced squeezed light.
We show that the mean-squared errors of both range and velocity estimations are inversely proportional to the squared number of signal photons, simultaneously attaining the Heisenberg limit.
arXiv Detail & Related papers (2023-11-24T15:29:03Z) - Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations [0.0]
We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
arXiv Detail & Related papers (2023-03-19T15:41:32Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Demonstration of Quantum Advantage in Microwave Quantum Radar [0.0]
We demonstrate a quantum advantage $Q>1$ for microwave radar using a superconducting circuit.
The experiment is a proof-of-principle performed inside a dilution refrigerator.
arXiv Detail & Related papers (2022-11-10T16:43:41Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Protection of noise squeezing in a quantum interferometer with optimal
resource allocation [0.46180371154032895]
Interferometers are crucial for precision measurements, including gravitational wave, laser, radar and imaging.
We design and demonstrate a quantum interferometer utilizing a beamsplitter with variable splitting ratio to protect quantum resource against environmental impacts.
This strategy could open a way to retain quantum advantages for quantum information processing and quantum precision measurement in lossy environments.
arXiv Detail & Related papers (2022-08-17T14:29:28Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Quantum dual-path interferometry scheme for axion dark matter searches [1.0636475069923585]
We show that in a cavity permeated by a magnetic field, the single axion-photon conversion rate is enhanced by the cavity quality factor.
The axion cavity can be considered a quantum device emitting single photons with temporal separations.
arXiv Detail & Related papers (2022-01-20T16:55:49Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.