Natias: Neuron Attribution based Transferable Image Adversarial Steganography
- URL: http://arxiv.org/abs/2409.04968v1
- Date: Sun, 8 Sep 2024 04:09:51 GMT
- Title: Natias: Neuron Attribution based Transferable Image Adversarial Steganography
- Authors: Zexin Fan, Kejiang Chen, Kai Zeng, Jiansong Zhang, Weiming Zhang, Nenghai Yu,
- Abstract summary: adversarial steganography has garnered considerable attention due to its ability to effectively deceive deep-learning-based steganalysis.
We propose a novel adversarial steganographic scheme named Natias.
Our proposed method can be seamlessly integrated with existing adversarial steganography frameworks.
- Score: 62.906821876314275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image steganography is a technique to conceal secret messages within digital images. Steganalysis, on the contrary, aims to detect the presence of secret messages within images. Recently, deep-learning-based steganalysis methods have achieved excellent detection performance. As a countermeasure, adversarial steganography has garnered considerable attention due to its ability to effectively deceive deep-learning-based steganalysis. However, steganalysts often employ unknown steganalytic models for detection. Therefore, the ability of adversarial steganography to deceive non-target steganalytic models, known as transferability, becomes especially important. Nevertheless, existing adversarial steganographic methods do not consider how to enhance transferability. To address this issue, we propose a novel adversarial steganographic scheme named Natias. Specifically, we first attribute the output of a steganalytic model to each neuron in the target middle layer to identify critical features. Next, we corrupt these critical features that may be adopted by diverse steganalytic models. Consequently, it can promote the transferability of adversarial steganography. Our proposed method can be seamlessly integrated with existing adversarial steganography frameworks. Thorough experimental analyses affirm that our proposed technique possesses improved transferability when contrasted with former approaches, and it attains heightened security in retraining scenarios.
Related papers
- Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis.
Deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis.
Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability.
We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset.
arXiv Detail & Related papers (2025-01-29T11:09:50Z) - A Novel Approach to Image Steganography Using Generative Adversarial Networks [0.0]
We propose a novel approach to image steganography that leverages the power of generative adversarial networks (GANs)
By employing a carefully designed GAN architecture, our method ensures the creation of stego-images that are visually indistinguishable from their original counterparts.
Our results demonstrate significant improvements in metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and robustness against detection.
arXiv Detail & Related papers (2024-11-27T14:34:41Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Blind Data Adaptation to tackle Covariate Shift in Operational Steganalysis [9.565324766070407]
Image Steganography allows individuals to hide illegal information in digital images without arousing suspicions.
It is crucial to develop effective steganalysis methods enabling to detect manipulated images for clandestine communications.
We develop TADA, a novel methodology enabling to emulate sources aligned with specific targets in steganalysis.
arXiv Detail & Related papers (2024-05-27T08:55:22Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
The scarcity of publicly available medical images has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images.
A significant em domain discrepancy exists between natural and medical images, which causes AI models to exhibit heightened em vulnerability to adversarial attacks.
This paper proposes a em domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion.
arXiv Detail & Related papers (2024-02-25T06:39:15Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.