Blind Data Adaptation to tackle Covariate Shift in Operational Steganalysis
- URL: http://arxiv.org/abs/2405.16961v2
- Date: Wed, 29 May 2024 06:47:30 GMT
- Title: Blind Data Adaptation to tackle Covariate Shift in Operational Steganalysis
- Authors: Rony Abecidan, Vincent Itier, Jérémie Boulanger, Patrick Bas, Tomáš Pevný,
- Abstract summary: Image Steganography allows individuals to hide illegal information in digital images without arousing suspicions.
It is crucial to develop effective steganalysis methods enabling to detect manipulated images for clandestine communications.
We develop TADA, a novel methodology enabling to emulate sources aligned with specific targets in steganalysis.
- Score: 9.565324766070407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of image manipulation for unethical purposes poses significant challenges in social networks. One particularly concerning method is Image Steganography, allowing individuals to hide illegal information in digital images without arousing suspicions. Such a technique pose severe security risks, making it crucial to develop effective steganalysis methods enabling to detect manipulated images for clandestine communications. Although significant advancements have been achieved with machine learning models, a critical issue remains: the disparity between the controlled datasets used to train steganalysis models against real-world datasets of forensic practitioners, undermining severely the practical effectiveness of standardized steganalysis models. In this paper, we address this issue focusing on a realistic scenario where practitioners lack crucial information about the limited target set of images under analysis, including details about their development process and even whereas it contains manipulated images or not. By leveraging geometric alignment and distribution matching of source and target residuals, we develop TADA (Target Alignment through Data Adaptation), a novel methodology enabling to emulate sources aligned with specific targets in steganalysis, which is also relevant for highly unbalanced targets. The emulator is represented by a light convolutional network trained to align distributions of image residuals. Experimental validation demonstrates the potential of our strategy over traditional methods fighting covariate shift in steganalysis.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Natias: Neuron Attribution based Transferable Image Adversarial Steganography [62.906821876314275]
adversarial steganography has garnered considerable attention due to its ability to effectively deceive deep-learning-based steganalysis.
We propose a novel adversarial steganographic scheme named Natias.
Our proposed method can be seamlessly integrated with existing adversarial steganography frameworks.
arXiv Detail & Related papers (2024-09-08T04:09:51Z) - Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models [13.970483987621135]
Contrastive Analysis (CA) aims to identify patterns in images that allow distinguishing between a background (BG) dataset and a target (TG) dataset (i.e. unhealthy subjects)
Recent works on this topic rely on variational autoencoders (VAE) or contrastive learning strategies to learn the patterns that separate TG samples from BG samples in a supervised manner.
We employ a self-supervised contrastive encoder to learn a latent representation encoding only common patterns from input images, using samples exclusively from the BG dataset during training, and approximating the distribution of the target patterns by leveraging data augmentation techniques.
arXiv Detail & Related papers (2024-06-02T15:19:07Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
The scarcity of publicly available medical images has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images.
A significant em domain discrepancy exists between natural and medical images, which causes AI models to exhibit heightened em vulnerability to adversarial attacks.
This paper proposes a em domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion.
arXiv Detail & Related papers (2024-02-25T06:39:15Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.