Machine Learning-Based Prediction of Key Genes Correlated to the Subretinal Lesion Severity in a Mouse Model of Age-Related Macular Degeneration
- URL: http://arxiv.org/abs/2409.05047v1
- Date: Sun, 8 Sep 2024 10:08:54 GMT
- Title: Machine Learning-Based Prediction of Key Genes Correlated to the Subretinal Lesion Severity in a Mouse Model of Age-Related Macular Degeneration
- Authors: Kuan Yan, Yue Zeng, Dai Shi, Ting Zhang, Dmytro Matsypura, Mark C. Gillies, Ling Zhu, Junbin Gao,
- Abstract summary: Age-related macular degeneration (AMD) is a major cause of blindness in older adults.
Despite advances in understanding AMD, the molecular factors driving the severity of subretinal scarring (fibrosis) remain elusive.
This study introduces a machine learning-based framework to predict key genes that are strongly correlated with lesion severity.
- Score: 23.83675500954393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Age-related macular degeneration (AMD) is a major cause of blindness in older adults, severely affecting vision and quality of life. Despite advances in understanding AMD, the molecular factors driving the severity of subretinal scarring (fibrosis) remain elusive, hampering the development of effective therapies. This study introduces a machine learning-based framework to predict key genes that are strongly correlated with lesion severity and to identify potential therapeutic targets to prevent subretinal fibrosis in AMD. Using an original RNA sequencing (RNA-seq) dataset from the diseased retinas of JR5558 mice, we developed a novel and specific feature engineering technique, including pathway-based dimensionality reduction and gene-based feature expansion, to enhance prediction accuracy. Two iterative experiments were conducted by leveraging Ridge and ElasticNet regression models to assess biological relevance and gene impact. The results highlight the biological significance of several key genes and demonstrate the framework's effectiveness in identifying novel therapeutic targets. The key findings provide valuable insights for advancing drug discovery efforts and improving treatment strategies for AMD, with the potential to enhance patient outcomes by targeting the underlying genetic mechanisms of subretinal lesion development.
Related papers
- Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review [4.799269666410891]
We provide an overview of how GNN and model explainability techniques have been applied on fMRI datasets for disorder prediction tasks.
We find that while most studies have performant models, salient features highlighted in these studies vary greatly across studies on the same disorder.
We suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers.
arXiv Detail & Related papers (2024-05-01T15:29:55Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - AI driven B-cell Immunotherapy Design [0.0]
The effectiveness of antigen neutralisation and elimination hinges upon the strength, sensitivity, and specificity of the paratope-epitope interaction.
In recent years, artificial intelligence and machine learning methods have made significant strides, revolutionising the prediction of protein structures and their complexes.
This review focuses on the progress of machine learning-based tools and their frameworks in the domain of B-cell immunotherapy design.
arXiv Detail & Related papers (2023-09-03T09:14:10Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SPLDExtraTrees: Robust machine learning approach for predicting kinase
inhibitor resistance [1.0674604700001966]
We propose a robust machine learning method, SPLDExtraTrees, which can accurately predict ligand binding affinity changes upon protein mutation.
The proposed method ranks training data following a specific scheme that starts with easy-to-learn samples.
Experiments substantiate the capability of the proposed method for predicting kinase inhibitor resistance under three scenarios.
arXiv Detail & Related papers (2021-11-15T09:07:45Z) - Predicting Potential Drug Targets Using Tensor Factorisation and
Knowledge Graph Embeddings [4.415977307120617]
We have developed a new tensor factorisation model to predict potential drug targets (i.e.,genes or proteins) for diseases.
We enriched the data with gene representations learned from a drug discovery-oriented knowledge graph and applied our proposed method to predict the clinical outcomes for unseen target and dis-ease pairs.
arXiv Detail & Related papers (2021-05-20T16:19:00Z) - Relation-weighted Link Prediction for Disease Gene Identification [0.3078691410268859]
We propose a novel machine learning method that identifies disease genes on such graphs.
We show that our algorithms outperform its closest state-of-the-art competitor in disease gene identification by 24.1%.
We also show that we achieve higher precision than Open Targets, the leading initiative for target identification, with respect to predicting drug targets in clinical trials for Parkinson's disease.
arXiv Detail & Related papers (2020-11-10T15:09:33Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.