論文の概要: Socially Responsible Data for Large Multilingual Language Models
- arxiv url: http://arxiv.org/abs/2409.05247v1
- Date: Sun, 8 Sep 2024 23:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:22:22.965413
- Title: Socially Responsible Data for Large Multilingual Language Models
- Title(参考訳): 大規模多言語言語モデルに対する社会的責任のあるデータ
- Authors: Andrew Smart, Ben Hutchinson, Lameck Mbangula Amugongo, Suzanne Dikker, Alex Zito, Amber Ebinama, Zara Wudiri, Ding Wang, Erin van Liemt, João Sedoc, Seyi Olojo, Stanley Uwakwe, Edem Wornyo, Sonja Schmer-Galunder, Jamila Smith-Loud,
- Abstract要約: 大規模言語モデル(LLM)は、過去3年間で、急速にサイズと明らかな能力が向上している。
グローバル・ノース以外の地域社会の言語に対応するためのモデルを模索している。
- 参考スコア(独自算出の注目度): 12.338723881042926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have rapidly increased in size and apparent capabilities in the last three years, but their training data is largely English text. There is growing interest in multilingual LLMs, and various efforts are striving for models to accommodate languages of communities outside of the Global North, which include many languages that have been historically underrepresented in digital realms. These languages have been coined as "low resource languages" or "long-tail languages", and LLMs performance on these languages is generally poor. While expanding the use of LLMs to more languages may bring many potential benefits, such as assisting cross-community communication and language preservation, great care must be taken to ensure that data collection on these languages is not extractive and that it does not reproduce exploitative practices of the past. Collecting data from languages spoken by previously colonized people, indigenous people, and non-Western languages raises many complex sociopolitical and ethical questions, e.g., around consent, cultural safety, and data sovereignty. Furthermore, linguistic complexity and cultural nuances are often lost in LLMs. This position paper builds on recent scholarship, and our own work, and outlines several relevant social, cultural, and ethical considerations and potential ways to mitigate them through qualitative research, community partnerships, and participatory design approaches. We provide twelve recommendations for consideration when collecting language data on underrepresented language communities outside of the Global North.
- Abstract(参考訳): 大規模言語モデル(LLM)は、過去3年間に急速にサイズと明らかな能力を高めてきたが、そのトレーニングデータは主に英語のテキストである。
多言語 LLM への関心が高まっており、歴史的にデジタル領域で表現されていない多くの言語を含むグローバル・ノース以外の地域社会の言語に対応するためのモデルを模索している。
これらの言語は「低リソース言語」あるいは「ロングテール言語」と呼ばれており、LLMの性能は概して貧弱である。
LLMをより多くの言語に拡張することは、コミュニティ間のコミュニケーションや言語保存の支援など、多くの潜在的な利益をもたらす可能性があるが、これらの言語上のデータ収集が抽出的でなく、過去の搾取的慣行を再現していないことを確実にするためには、大きな注意が必要である。
以前に植民された人々、先住民族、非西洋言語によって話される言語からデータを集めることは、社会政治学や倫理学といった複雑な問題、例えば同意、文化の安全、データの主権に関する疑問を提起する。
さらに、言語的な複雑さと文化的ニュアンスはしばしばLLMで失われる。
本稿は,近年の学問と我々の研究に基づいて,社会・文化的・倫理的考察と,質的研究,地域連携,参加型デザインアプローチを通じてそれらを緩和する可能性について概説する。
我々は,グローバル・ノース以外での表現不足言語コミュニティの言語データ収集において,考慮すべき12の勧告を提示する。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - LLM for Everyone: Representing the Underrepresented in Large Language Models [21.07409393578553]
この論文は、表現不足言語に焦点をあてて、NLPの研究と開発におけるギャップを埋めることを目的としている。
大規模言語モデル(LLM)の包括的評価を行い,それらの能力を評価する。
提案手法は、言語間連続的命令チューニング、検索に基づく言語間インコンテキスト学習、コンテキスト内クエリアライメントを網羅する。
論文 参考訳(メタデータ) (2024-09-20T20:53:22Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
多言語フィードバックは,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、多言語フィードバックアプローチは、様々な強いベースラインよりも優れていることが示された。
さらに分析したところ、多言語フィードバックは多言語話者に役立てるための効果的かつ公平な回避戦略であることがわかった。
論文 参考訳(メタデータ) (2024-06-22T21:59:12Z) - Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies [38.3269908062146]
多言語シナリオにおける真理性評価のためのベンチマークを構築する。
多数の言語にまたがるデータ割り当てを最適化するために,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
論文 参考訳(メタデータ) (2024-06-20T15:59:07Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [48.314619377988436]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - SeeGULL Multilingual: a Dataset of Geo-Culturally Situated Stereotypes [18.991295993710224]
SeeGULLは、20の言語にまたがって、23のリージョンにわたる人間のアノテーションを備えた、グローバルにスケールした、ソーシャルステレオタイプの多言語データセットである。
論文 参考訳(メタデータ) (2024-03-08T22:09:58Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。