AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation
- URL: http://arxiv.org/abs/2409.05420v1
- Date: Mon, 9 Sep 2024 08:21:17 GMT
- Title: AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation
- Authors: Asim Naveed, Syed S. Naqvi, Tariq M. Khan, Shahzaib Iqbal, M. Yaqoob Wani, Haroon Ahmed Khan,
- Abstract summary: This research presents a robust approach utilizing a dilated convolutional residual network.
It incorporates an attention-based spatial feature enhancement block (ASFEB) and employs a guided decoder strategy.
The effectiveness of the proposed AD-Net was evaluated using four public benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computer-aided diagnosis tools employed for skin cancer treatment and early diagnosis, skin lesion segmentation is important. However, achieving precise segmentation is challenging due to inherent variations in appearance, contrast, texture, and blurry lesion boundaries. This research presents a robust approach utilizing a dilated convolutional residual network, which incorporates an attention-based spatial feature enhancement block (ASFEB) and employs a guided decoder strategy. In each dilated convolutional residual block, dilated convolution is employed to broaden the receptive field with varying dilation rates. To improve the spatial feature information of the encoder, we employed an attention-based spatial feature enhancement block in the skip connections. The ASFEB in our proposed method combines feature maps obtained from average and maximum-pooling operations. These combined features are then weighted using the active outcome of global average pooling and convolution operations. Additionally, we have incorporated a guided decoder strategy, where each decoder block is optimized using an individual loss function to enhance the feature learning process in the proposed AD-Net. The proposed AD-Net presents a significant benefit by necessitating fewer model parameters compared to its peer methods. This reduction in parameters directly impacts the number of labeled data required for training, facilitating faster convergence during the training process. The effectiveness of the proposed AD-Net was evaluated using four public benchmark datasets. We conducted a Wilcoxon signed-rank test to verify the efficiency of the AD-Net. The outcomes suggest that our method surpasses other cutting-edge methods in performance, even without the implementation of data augmentation strategies.
Related papers
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
This paper proposes a feature-enhanced interaction network based on DPCN, named MDFI-Net.
The proposed MDFI-Net achieves segmentation performance superior to state-of-the-art methods on public datasets.
arXiv Detail & Related papers (2024-10-20T16:42:22Z) - BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
arXiv Detail & Related papers (2024-05-05T21:08:49Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning [4.776465250559035]
We propose a Multi-resolution Contextual Network (MRC-Net) to learn contextual dependencies between semantically different features.
We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE.
arXiv Detail & Related papers (2023-04-25T14:27:34Z) - Adaptive Multi-scale Online Likelihood Network for AI-assisted
Interactive Segmentation [3.3909100561725127]
Existing interactive segmentation methods leverage automatic segmentation and user interactions for label refinement.
We propose an adaptive multi-scale online likelihood network (MONet) that adaptively learns in a data-efficient online setting.
Our approach achieved 5.86% higher Dice score with 24.67% less perceived NASA-TLX workload score than the state-of-the-art.
arXiv Detail & Related papers (2023-03-23T22:20:56Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.