Breakdown of boundary criticality and exotic topological semimetals in $\mathcal{P}\mathcal{T}$-invariant systems
- URL: http://arxiv.org/abs/2409.05437v1
- Date: Mon, 9 Sep 2024 08:38:27 GMT
- Title: Breakdown of boundary criticality and exotic topological semimetals in $\mathcal{P}\mathcal{T}$-invariant systems
- Authors: Hong Wu, Jun-Hong An,
- Abstract summary: We show that periodic driving can break the boundary criticality of a PT-invariant system.
We discover exotic second-order Dirac and nodal-line semimetals with coexisting surface and hinge Fermi arcs.
- Score: 2.253370796182325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It was recently found that, going beyond the tendfold Altland-Zirnbauer symmetry classes and violating the bulk-boundary correspondence of the usual topological phases, PT-invariant systems support a real Chern insulator with the so-called boundary criticality, which forbids the transition between different orders of topological phases accompanied by the closing and reopening of the bulk-band gap. Here, we fnd that the periodic driving can break the boundary criticality of a PT-invariant system. Setting free from the the boundary criticality, diverse first- and second-order topological phases absent in the static case are found in both the zero and Pi/T modes. The application of our result in the three-dimensional PT-invariant system permits us to discover exotic second-order Dirac and nodal-line semimetals with coexisting surface and hinge Fermi arcs. Enriching the family of the topological phases in PT-invariant systems, our result provides us a useful way to explore novel topological phases.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Exceptional Points and Braiding Topology in Non-Hermitian Systems with long-range coupling [0.0]
We present a study of complex energy braiding in a 1D non-Hermitian system with $n$th order long range coupling.
Our work highlights the emergence of novel topological phenomena in such systems.
arXiv Detail & Related papers (2024-07-05T17:55:48Z) - Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings [41.94295877935867]
We show the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel.
We also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings.
arXiv Detail & Related papers (2024-05-16T15:16:33Z) - Topological holography for fermions [2.064157605420738]
Topological holography is conjectured to capture the topological aspects of symmetry in gapped and gapless systems.
We extend the SymTFT framework to establish a topological holography correspondence for fermionic systems.
arXiv Detail & Related papers (2024-04-29T18:00:02Z) - Topological squashed entanglement: nonlocal order parameter for
one-dimensional topological superconductors [0.0]
We show the end-to-end, long-distance, bipartite squashed entanglement between the edges of a many-body system.
For the Kitaev chain in the entire topological phase, the edge squashed entanglement is quantized to log(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase.
Such topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the presence of interactions, and is robust against disorder and local perturbations.
arXiv Detail & Related papers (2022-01-28T10:57:51Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.