論文の概要: Reinforcement Learning for Variational Quantum Circuits Design
- arxiv url: http://arxiv.org/abs/2409.05475v1
- Date: Mon, 9 Sep 2024 10:07:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:10:24.503277
- Title: Reinforcement Learning for Variational Quantum Circuits Design
- Title(参考訳): 変分量子回路設計のための強化学習
- Authors: Simone Foderà, Gloria Turati, Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi,
- Abstract要約: 変分量子アルゴリズムは、量子コンピュータの最適化問題を解くための有望なツールとして登場した。
本研究では、強力で柔軟な強化学習パラダイムを活用し、量子回路を自律的に生成できるエージェントを訓練する。
以上の結果から,最大カット問題に対して,R_yz$接続回路は高い近似比が得られることが示唆された。
- 参考スコア(独自算出の注目度): 10.136215038345012
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Variational Quantum Algorithms have emerged as promising tools for solving optimization problems on quantum computers. These algorithms leverage a parametric quantum circuit called ansatz, where its parameters are adjusted by a classical optimizer with the goal of optimizing a certain cost function. However, a significant challenge lies in designing effective circuits for addressing specific problems. In this study, we leverage the powerful and flexible Reinforcement Learning paradigm to train an agent capable of autonomously generating quantum circuits that can be used as ansatzes in variational algorithms to solve optimization problems. The agent is trained on diverse problem instances, including Maximum Cut, Maximum Clique and Minimum Vertex Cover, built from different graph topologies and sizes. Our analysis of the circuits generated by the agent and the corresponding solutions shows that the proposed method is able to generate effective ansatzes. While our goal is not to propose any new specific ansatz, we observe how the agent has discovered a novel family of ansatzes effective for Maximum Cut problems, which we call $R_{yz}$-connected. We study the characteristics of one of these ansatzes by comparing it against state-of-the-art quantum algorithms across instances of varying graph topologies, sizes, and problem types. Our results indicate that the $R_{yz}$-connected circuit achieves high approximation ratios for Maximum Cut problems, further validating our proposed agent. In conclusion, our study highlights the potential of Reinforcement Learning techniques in assisting researchers to design effective quantum circuits which could have applications in a wide number of tasks.
- Abstract(参考訳): 変分量子アルゴリズムは、量子コンピュータの最適化問題を解くための有望なツールとして登場した。
これらのアルゴリズムはアンサッツと呼ばれるパラメトリック量子回路を利用しており、パラメータは古典的なオプティマイザによって調整され、あるコスト関数を最適化する。
しかし、重要な課題は、特定の問題に対処する効果的な回路を設計することである。
本研究では、強力で柔軟な強化学習パラダイムを利用して、変分アルゴリズムのアンサーゼとして使用できる量子回路を自律的に生成できるエージェントを訓練し、最適化問題を解く。
このエージェントは、さまざまなグラフトポロジとサイズから構築されたMaximum Cut、Maximum Clique、Minimum Vertex Coverなど、さまざまな問題インスタンスでトレーニングされている。
エージェントが生成した回路とそれに対応する解を解析した結果,提案手法が有効なアンサーゼを生成できることが判明した。
我々のゴールは、新しい特定のアンザッツを提案することではありませんが、エージェントがいかにして、最大カット問題に有効な新しいアンザイズ族を発見したかを観察し、それを$R_{yz}$-connectと呼びます。
種々のグラフトポロジ,サイズ,問題型のインスタンス間で、最先端の量子アルゴリズムと比較することにより、これらのアンサーゼの1つの特性について検討する。
R_{yz}$-connect 回路は最大カット問題に対して高い近似比を達成し,さらに提案手法の有効性を検証した。
本研究は、研究者が様々なタスクに応用できる効果的な量子回路を設計するための強化学習技術の可能性を強調した。
関連論文リスト
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
ポートフォリオ最適化(PO)は、投資ポートフォリオのリスクを最小限に抑えつつ、純利益を最大化することを目的とした金融問題である。
本稿では,量子パラメータの変動を調べるために,新しいスケーラブルなフレームワークPO-QAを提案する。
本結果は,量子機械学習のレンズからPOを理解する上で有効な知見を提供する。
論文 参考訳(メタデータ) (2024-07-29T10:26:28Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Sub-universal variational circuits for combinatorial optimization
problems [0.0]
この研究は、2ビット行列を用いて構築された最適化問題に対する量子近似解を生成するために設計された古典的確率回路の新たなクラスを導入する。
そこで,本研究では,最大カウト問題における変分回路の性能について検討した。
この結果から,変分回路の性能を準ユニバーサルゲートセットで評価することは,量子変分回路が励起可能な領域を特定する上で貴重な指標であることが示唆された。
論文 参考訳(メタデータ) (2023-08-29T02:16:48Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Gradient-free quantum optimization on NISQ devices [0.0]
重み依存学習の最近の進歩を考察し、適切な回路アーキテクチャとパラメータチューニングのトレードオフに対処する戦略を提案する。
遺伝的競合を介して回路を評価するNEATに基づくアルゴリズムの使用を検討し、パラメータ数を超えることにより問題を回避します。
論文 参考訳(メタデータ) (2020-12-23T10:24:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。