論文の概要: Harmonic Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2409.05521v1
- Date: Mon, 9 Sep 2024 11:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:00:05.333357
- Title: Harmonic Reasoning in Large Language Models
- Title(参考訳): 大規模言語モデルにおける調和推論
- Authors: Anna Kruspe,
- Abstract要約: 本稿では,Large Language Models (LLMs) がいかに音楽的タスクに対処するかをよく理解し,その理由を考察する。
以上の結果から,LLMは音節間隔でうまく機能するが,和音や音階の認識など,より複雑な作業に苦慮していることが明らかとなった。
このことは、現在のLLM能力の明確な限界を指摘し、より良くする必要があるかを示します。
- 参考スコア(独自算出の注目度): 1.4589372436314496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are becoming very popular and are used for many different purposes, including creative tasks in the arts. However, these models sometimes have trouble with specific reasoning tasks, especially those that involve logical thinking and counting. This paper looks at how well LLMs understand and reason when dealing with musical tasks like figuring out notes from intervals and identifying chords and scales. We tested GPT-3.5 and GPT-4o to see how they handle these tasks. Our results show that while LLMs do well with note intervals, they struggle with more complicated tasks like recognizing chords and scales. This points out clear limits in current LLM abilities and shows where we need to make them better, which could help improve how they think and work in both artistic and other complex areas. We also provide an automatically generated benchmark data set for the described tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は非常に人気があり、芸術における創造的なタスクを含む様々な目的に使われている。
しかしながら、これらのモデルは特定の推論タスク、特に論理的思考や数え上げに関わるタスクに支障をきたすことがある。
本稿では,LLMが音符を間隔から抽出し,和音や音階を識別するなど,音楽的タスクの理解と理性について考察する。
GPT-3.5 および GPT-4o を用いて,これらのタスクの処理方法について検討した。
以上の結果から,LLMは音節間隔でうまく機能するが,和音や音階の認識など,より複雑な作業に苦慮していることが明らかとなった。
このことは、現在のLLM能力の明確な限界を指摘し、それらをより良くする必要があるかを示し、芸術的および他の複雑な領域での考え方や働き方を改善するのに役立ちます。
また、記述されたタスクのベンチマークデータセットを自動生成する。
関連論文リスト
- On Memorization of Large Language Models in Logical Reasoning [70.94164038947078]
大きな言語モデル(LLM)は、挑戦的な推論ベンチマークで優れたパフォーマンスを達成するが、基本的な推論ミスを発生させることもできる。
1つの仮説は、より高度でほぼ飽和した性能は、類似した問題の記憶が原因ではないかというものである。
微調整は暗記を重くするが,常に一般化性能を向上することを示す。
論文 参考訳(メタデータ) (2024-10-30T15:31:54Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示す。
LLMはどの程度の間、正書法情報を学ぶことができるのか?
LLMの正書法知識をテストするために設計されたタスクの集合を特徴とする新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-23T18:27:03Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can LLMs "Reason" in Music? An Evaluation of LLMs' Capability of Music Understanding and Generation [31.825105824490464]
シンボリック・ミュージック(英: Symbolic Music)は、言語に似た、離散的な記号で符号化される。
近年,大言語モデル (LLM) を記号的音楽領域に適用する研究が進められている。
本研究は, シンボリック・ミュージック・プロセッシングにおけるLLMの能力と限界について, 徹底的に検討する。
論文 参考訳(メタデータ) (2024-07-31T11:29:46Z) - Sign of the Times: Evaluating the use of Large Language Models for Idiomaticity Detection [2.2724928083094196]
本研究は,SemEval 2022 Task 2a, FLUTE, MAGPIEの3つの慣用性データセット上でのLLMの性能について考察する。
これらのモデルが競合する性能を与える一方で、最大のスケールであっても、微調整されたタスク固有モデルの結果と一致しないことがわかった。
論文 参考訳(メタデータ) (2024-05-15T11:55:14Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
文章を記述したLarge Language Model (LLM) を提供する。
イベントの構造と持続時間に関する常識的な知識に関して、それらを調査する。
これらの能力を反映した3つの課題に対して,最先端のLCMを評価した。
論文 参考訳(メタデータ) (2023-11-14T18:57:15Z) - Benchmarking the Abilities of Large Language Models for RDF Knowledge
Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? [0.0]
大きな言語モデル(LLM)は、自然言語処理とコーディングタスクにおいて大幅に改善され、急速に進歩している。
様々なLSMの習熟度を評価するために,Turtle構文でシリアライズされた知識グラフを解析,理解,分析,作成する5つのタスクのセットを作成した。
GPT-3.5、GPT-4、Claude 1.3、Claude 2.0の4つの商用LLMと、GPT4All VicunaとGPT4All Falcon 13Bの2つのオフラインモデルが含まれていた。
論文 参考訳(メタデータ) (2023-09-29T10:36:04Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
小さな基礎モデルは、命令駆動データを用いて微調整された場合、多様なタスクに対処する際、顕著な習熟度を示すことができる。
本研究は, 汎用的な指導よりも, 1つないし数つの特定のタスクに主眼を置いている, 実践的な問題設定について検討する。
実験結果から,命令データに対する微調整LLaMAは,タスクの記述能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-05-22T16:56:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。