論文の概要: Approximation Bounds for Recurrent Neural Networks with Application to Regression
- arxiv url: http://arxiv.org/abs/2409.05577v1
- Date: Mon, 9 Sep 2024 13:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:39:56.589774
- Title: Approximation Bounds for Recurrent Neural Networks with Application to Regression
- Title(参考訳): リカレントニューラルネットワークの近似境界と回帰への応用
- Authors: Yuling Jiao, Yang Wang, Bokai Yan,
- Abstract要約: 深部ReLUリカレントニューラルネットワーク(RNN)の近似能力について検討し,RNNを用いた非パラメトリック最小二乗回帰の収束特性について検討した。
H" の滑らかな関数に対する RNN の近似誤差の上限を導出する。
以上の結果から,RNNの性能に関する統計的保証が得られる。
- 参考スコア(独自算出の注目度): 7.723218675113336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the approximation capacity of deep ReLU recurrent neural networks (RNNs) and explore the convergence properties of nonparametric least squares regression using RNNs. We derive upper bounds on the approximation error of RNNs for H\"older smooth functions, in the sense that the output at each time step of an RNN can approximate a H\"older function that depends only on past and current information, termed a past-dependent function. This allows a carefully constructed RNN to simultaneously approximate a sequence of past-dependent H\"older functions. We apply these approximation results to derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer in regression problem. Our error bounds achieve minimax optimal rate under both exponentially $\beta$-mixing and i.i.d. data assumptions, improving upon existing ones. Our results provide statistical guarantees on the performance of RNNs.
- Abstract(参考訳): 深部ReLUリカレントニューラルネットワーク(RNN)の近似能力について検討し,RNNを用いた非パラメトリック最小二乗回帰の収束特性について検討した。
我々は、過去の情報と現在の情報にのみ依存するH\"older関数を、過去の関数と呼ばれる、RNNの各時間ステップにおける出力が近似できるという意味で、H\"older smooth functionに対するRNNの近似誤差の上限を導出する。
これにより、慎重に構築されたRNNは、過去の依存するH\"古い関数の列を同時に近似することができる。
回帰問題における経験的リスク最小化器の予測誤差に対して、これらの近似結果を非漸近上界の導出に応用する。
我々の誤差境界は、指数関数的に$\beta$-mixing と i.d. のデータ仮定の両方の下で最小値の最適値を達成する。
以上の結果から,RNNの性能に関する統計的保証が得られる。
関連論文リスト
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
偏差推定器の回帰関数をネーティブに学習し,対象関数のサンプル平均値を取得する。
本稿では,自動脱バイアスの欠点に対処する新しいRR学習手法として,モーメント制約学習を提案する。
論文 参考訳(メタデータ) (2024-09-29T20:56:54Z) - Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality [0.0]
ディープニューラルネットワーク予測器のスパースペナル化正規化について検討する。
正方形と幅広い損失関数を扱う。
論文 参考訳(メタデータ) (2024-06-12T15:21:51Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Kernel Limit of Recurrent Neural Networks Trained on Ergodic Data Sequences [0.0]
我々は、リカレントニューラルネットワーク(RNN)の接点を、隠されたユニットの数、シーケンス内のデータサンプル、隠された状態更新、トレーニングステップを同時に無限に成長させるものとして特徴づける。
これらの手法は、データサンプルの数とニューラルネットワークのサイズが無限に増加するにつれて、データシーケンスに基づいてトレーニングされたRNNのニューラルネットワーク(NTK)制限を引き起こす。
論文 参考訳(メタデータ) (2023-08-28T13:17:39Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - DNNR: Differential Nearest Neighbors Regression [8.667550264279166]
K-nearest neighbors(KNN)は、機械学習において最も早く、最も確立されたアルゴリズムの1つである。
回帰タスクでは、KNNは、多くの課題を引き起こす地区内のターゲットを平均化する。
両問題に同時に対処するDNNR(differial Nearest Neighbors Regression)を提案する。
論文 参考訳(メタデータ) (2022-05-17T15:22:53Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Spectral Pruning for Recurrent Neural Networks [0.0]
リカレントニューラルネットワーク(RNN)のような、リカレントアーキテクチャを備えたニューラルネットワークのプルーニング技術は、エッジコンピューティングデバイスへの応用に強く望まれている。
本稿では、「スペクトルプルーニング」にインスパイアされたRNNに対する適切なプルーニングアルゴリズムを提案し、圧縮されたRNNに対する一般化誤差境界を提供する。
論文 参考訳(メタデータ) (2021-05-23T00:30:59Z) - An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their
Asymptotic Overconfidence [65.24701908364383]
ベイズ処理は、トレーニングデータを取り巻くReLUネットの過信を軽減することができる。
しかし、彼らから遠く離れたところでは、ReLUニューラルネットワーク(BNN)はいまだに不確実性を過小評価し過ぎている可能性がある。
事前学習した任意のReLU BNNに対して,低コストでemphpost-hocを適用可能であることを示す。
論文 参考訳(メタデータ) (2020-10-06T13:32:18Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
論文 参考訳(メタデータ) (2020-06-22T14:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。