pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning
- URL: http://arxiv.org/abs/2409.05701v1
- Date: Mon, 9 Sep 2024 15:13:56 GMT
- Title: pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning
- Authors: Jiahao Lai, Jiaqi Li, Jian Xu, Yanru Wu, Boshi Tang, Siqi Chen, Yongfeng Huang, Wenbo Ding, Yang Li,
- Abstract summary: Federated Learning (FL) offers a decentralized approach to model training, where data remains local and only model parameters are shared between the clients and the central server.
Traditional methods, such as Federated Averaging (FedAvg), linearly aggregate these parameters which are usually trained on heterogeneous data distributions.
We propose a novel generative parameter aggregation framework for personalized FL, textttpFedGPA.
- Score: 23.43592558078981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a decentralized approach to model training, where data remains local and only model parameters are shared between the clients and the central server. Traditional methods, such as Federated Averaging (FedAvg), linearly aggregate these parameters which are usually trained on heterogeneous data distributions, potentially overlooking the complex, high-dimensional nature of the parameter space. This can result in degraded performance of the aggregated model. While personalized FL approaches can mitigate the heterogeneous data issue to some extent, the limitation of linear aggregation remains unresolved. To alleviate this issue, we investigate the generative approach of diffusion model and propose a novel generative parameter aggregation framework for personalized FL, \texttt{pFedGPA}. In this framework, we deploy a diffusion model on the server to integrate the diverse parameter distributions and propose a parameter inversion method to efficiently generate a set of personalized parameters for each client. This inversion method transforms the uploaded parameters into a latent code, which is then aggregated through denoising sampling to produce the final personalized parameters. By encoding the dependence of a client's model parameters on the specific data distribution using the high-capacity diffusion model, \texttt{pFedGPA} can effectively decouple the complexity of the overall distribution of all clients' model parameters from the complexity of each individual client's parameter distribution. Our experimental results consistently demonstrate the superior performance of the proposed method across multiple datasets, surpassing baseline approaches.
Related papers
- Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation [0.0]
Federated learning (FL) develops global models without direct access to local datasets.
It is possible to access the model updates transferred between clients and servers, potentially revealing sensitive local information to adversaries.
Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters.
We propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters.
arXiv Detail & Related papers (2024-06-26T16:55:07Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - FedDD: Toward Communication-efficient Federated Learning with
Differential Parameter Dropout [13.056472977860976]
Federated Learning (FL) requires frequent exchange of model parameters, which leads to long communication delay.
We propose a novel framework of Federated learning scheme with Differential parameter Dropout (FedDD)
FedDD consists of two key modules: dropout rate allocation and uploaded parameter selection.
arXiv Detail & Related papers (2023-08-31T16:10:22Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth.
We show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity.
Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
arXiv Detail & Related papers (2023-06-15T10:48:59Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Robust Federated Learning Through Representation Matching and Adaptive
Hyper-parameters [5.319361976450981]
Federated learning is a distributed, privacy-aware learning scenario which trains a single model on data belonging to several clients.
Current federated learning methods struggle in cases with heterogeneous client-side data distributions.
We propose a novel representation matching scheme that reduces the divergence of local models.
arXiv Detail & Related papers (2019-12-30T20:19:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.