論文の概要: A Dual-Path neural network model to construct the flame nonlinear thermoacoustic response in the time domain
- arxiv url: http://arxiv.org/abs/2409.05885v1
- Date: Mon, 26 Aug 2024 12:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:21:30.465568
- Title: A Dual-Path neural network model to construct the flame nonlinear thermoacoustic response in the time domain
- Title(参考訳): 時間領域における炎非線形熱音響応答構築のためのデュアルパスニューラルネットワークモデル
- Authors: Jiawei Wu, Teng Wang, Jiaqi Nan, Lijun Yang, Jingxuan Li,
- Abstract要約: 我々は,限られた数値シミュレーションデータから包括的火炎非線形応答を構築できるディープラーニングアルゴリズムを開発した。
トレーニングデータから炎の非線形応答パターンを学習する際の精度を高めるために、Dual-Pathニューラルネットワークを導入する。
Dual-Pathネットワークは、速度摂動シーケンスの時間的特性に集中的に焦点を合わせるように設計されている。
- 参考スコア(独自算出の注目度): 6.947364283886359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional numerical simulation methods require substantial computational resources to accurately determine the complete nonlinear thermoacoustic response of flames to various perturbation frequencies and amplitudes. In this paper, we have developed deep learning algorithms that can construct a comprehensive flame nonlinear response from limited numerical simulation data. To achieve this, we propose using a frequency-sweeping data type as the training dataset, which incorporates a rich array of learnable information within a constrained dataset. To enhance the precision in learning flame nonlinear response patterns from the training data, we introduce a Dual-Path neural network. This network consists of a Chronological Feature Path and a Temporal Detail Feature Path. The Dual-Path network is specifically designed to focus intensively on the temporal characteristics of velocity perturbation sequences, yielding more accurate flame response patterns and enhanced generalization capabilities. Validations confirm that our approach can accurately model flame nonlinear responses, even under conditions of significant nonlinearity, and exhibits robust generalization capabilities across various test scenarios.
- Abstract(参考訳): 従来の数値シミュレーション手法では、様々な摂動周波数と振幅に対する火炎の完全な非線形熱音響応答を正確に決定するために、かなりの計算資源を必要とする。
本稿では,限られた数値シミュレーションデータから包括的火炎非線形応答を構築するディープラーニングアルゴリズムを開発した。
そこで本研究では,制約付きデータセットに学習可能な情報の豊富な配列を組み込んだ,周波数スウィーピングデータ型をトレーニングデータセットとして用いることを提案する。
トレーニングデータから炎の非線形応答パターンを学習する際の精度を高めるために、Dual-Pathニューラルネットワークを導入する。
このネットワークは、時間的特徴パスと時間的詳細特徴パスで構成されている。
Dual-Pathネットワークは、速度摂動列の時間的特性に集中的に焦点を合わせ、より正確な火炎応答パターンと一般化能力を高めるように設計されている。
提案手法は, 有意な非線形性条件下であっても, 正確に火炎非線形応答をモデル化でき, 各種試験シナリオにまたがる堅牢な一般化能力を示す。
関連論文リスト
- A Library of Mirrors: Deep Neural Nets in Low Dimensions are Convex Lasso Models with Reflection Features [54.83898311047626]
2層から有限層まで線形に活性化するニューラルネットワークについて検討する。
まず, 分岐深さの離散辞書を用いたLassoモデルについて検討した。
論文 参考訳(メタデータ) (2024-03-02T00:33:45Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Understanding Multi-phase Optimization Dynamics and Rich Nonlinear
Behaviors of ReLU Networks [8.180184504355571]
線形可分データに基づく勾配流による2層ReLUネットワークの学習過程の理論的評価を行う。
学習過程全体から4つの段階が明らかになり,学習の簡略化と複雑化の傾向が示された。
特定の非線形挙動は、初期、サドルプラトー力学、凝縮エスケープ、複雑化に伴う活性化パターンの変化など、理論的に正確に識別することもできる。
論文 参考訳(メタデータ) (2023-05-21T14:08:34Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
本研究では,線形および非線形な多自由度系の力学を学習できる物理に基づくリカレントニューラルネットワークモデルを提案する。
このモデルは、変位、速度、加速度、内部力を含む完全な応答のセットを推定することができる。
論文 参考訳(メタデータ) (2020-07-03T17:05:35Z) - Scalable Polyhedral Verification of Recurrent Neural Networks [9.781772283276734]
本稿では, Prover と呼ばれる再帰型ニューラルネットワークのスケーラブルかつ高精度な検証手法を提案する。
評価の結果,Proverはコンピュータビジョン,音声,モーションセンサの分類において,いくつかの難解な再帰モデルを検証できた。
論文 参考訳(メタデータ) (2020-05-27T11:57:01Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。