論文の概要: Fast ($\sim N$) Diffusion Map Algorithm
- arxiv url: http://arxiv.org/abs/2409.05901v1
- Date: Thu, 5 Sep 2024 20:45:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-11 22:10:02.859754
- Title: Fast ($\sim N$) Diffusion Map Algorithm
- Title(参考訳): Fast ($\sim N$) Diffusion Map Algorithm
- Authors: Julio Candanedo,
- Abstract要約: 我々はアルゴリズムを実演し、その実装は$sim N$で、$N$はサンプルの数を表す。
これらの手法は、サンプリング定理の制限により、事前の仮定なしに大規模な教師なし学習タスクに必須である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we explore parsimonious manifold learning techniques, specifically for Diffusion-maps. We demonstrate an algorithm and it's implementation with computational complexity (in both time and memory) of $\sim N$, with $N$ representing the number-of-samples. These techniques are essential for large-scale unsupervised learning tasks without any prior assumptions, due to sampling theorem limitations.
- Abstract(参考訳): 本研究では,特に拡散写像のための擬似多様体学習手法について検討する。
我々はアルゴリズムを実証し、その実装は計算複雑性(時間とメモリの両方)が$\sim N$で、$N$はサンプルの数を表す。
これらの手法は、サンプリング定理の制限により、事前の仮定なしに大規模な教師なし学習タスクに必須である。
関連論文リスト
- Explicit neural network classifiers for non-separable data [0.0]
我々は、トランケーションマップの観点から、フィードフォワードニューラルネットワークの大規模なクラスを特徴づける。
アプリケーションとして、ReLUニューラルネットワークが同心データを分離する特徴マップをどのように実装できるかを示す。
論文 参考訳(メタデータ) (2025-04-25T21:46:54Z) - Diffusion Boosted Trees [56.46631445688882]
拡散ブーストツリー(DBT)は、決定木によってパラメータ化される新しい拡散生成モデルであると見なすことができる。
DBT は弱を条件分布の強い勾配に結合し、それらの密度形式について明示的な仮定をしない。
論文 参考訳(メタデータ) (2024-06-03T22:11:38Z) - Convection-Diffusion Equation: A Theoretically Certified Framework for Neural Networks [14.01268607317875]
ニューラルネットワークの偏微分方程式モデルについて検討する。
この写像は対流拡散方程式で定式化できることを示す。
拡散機構をネットワークアーキテクチャに組み込んだ新しいネットワーク構造を設計する。
論文 参考訳(メタデータ) (2024-03-23T05:26:36Z) - Diffusion Posterior Sampling is Computationally Intractable [9.483130965295324]
後方サンプリングは、塗装、超解像、MRI再構成などのタスクに有用である。
暗号における最も基本的な仮定では、一方通行関数が存在する。
また,指数時間回帰サンプリングは,指数時間で逆転する一方向関数が存在するという強い仮定の下で,本質的に最適であることを示す。
論文 参考訳(メタデータ) (2024-02-20T05:28:13Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
ランダム分類ノイズを用いたPAC$gamma$-marginハーフスペースの問題について検討する。
我々は、問題のサンプル複雑性と計算効率の良いアルゴリズムのサンプル複雑性との間に固有のギャップを示唆する情報計算トレードオフを確立する。
論文 参考訳(メタデータ) (2023-06-28T16:33:39Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
本稿では,これらのミニマックス問題の解法として,適応最小最適化アルゴリズム(AdaFGDA)を提案する。
運動量に基づく還元および局所SGD技術を構築し、様々な適応学習率を柔軟に組み込む。
論文 参考訳(メタデータ) (2022-11-14T12:32:18Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Decomposing neural networks as mappings of correlation functions [57.52754806616669]
本研究では,ディープフィードフォワードネットワークによって実装された確率分布のマッピングについて検討する。
ニューラルネットワークで使用できる異なる情報表現と同様に、データに不可欠な統計を識別する。
論文 参考訳(メタデータ) (2022-02-10T09:30:31Z) - Visual Explanations for Convolutional Neural Networks via Latent
Traversal of Generative Adversarial Networks [17.475341881835355]
本稿では、GAN(Generative Adversarial Networks)を利用して、畳み込みニューラルネットワーク(CNN)が学んだことを解釈する手法を提案する。
我々のGANフレームワークは、新型コロナウイルスの特徴から肺の構造を切り離す。このGANを用いて、GANの潜伏した空間で補間することにより、胸部X線写真中の一対の陰性肺からCOVID陽性肺への移行を可視化することができる。
論文 参考訳(メタデータ) (2021-10-29T23:26:09Z) - Provable Lifelong Learning of Representations [21.440845049501778]
そこで本研究では,内部特徴表現を保守・洗練する,証明可能な生涯学習アルゴリズムを提案する。
すべてのタスクにおける任意の所望の精度に対して、表現の次元は、基礎となる表現の次元に近いままであることを示す。
論文 参考訳(メタデータ) (2021-10-27T00:41:23Z) - Rejection sampling from shape-constrained distributions in sublinear
time [14.18847457501901]
離散分布の様々なクラスを対象としたミニマックスフレームワークにおいて,リジェクションサンプリングのクエリ複雑性について検討した。
本研究は,アルファベットサイズに比例して複雑度が増大するサンプリングのための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-29T01:00:42Z) - Diffusion Mechanism in Residual Neural Network: Theory and Applications [12.573746641284849]
限られたトレーニングサンプルを持つ多くの学習タスクでは、拡散はラベル付きおよびラベルなしのデータポイントを接続する。
本稿では,ニューラルネットワークのアーキテクチャへの拡散を内部的に導入する新しい拡散残差ネットワーク(Diff-ResNet)を提案する。
構造的データ仮定により,提案した拡散ブロックは,クラス間点の分離性を向上させる距離-距離比を増大させることができることが証明された。
論文 参考訳(メタデータ) (2021-05-07T10:42:59Z) - Going beyond p-convolutions to learn grayscale morphological operators [64.38361575778237]
p-畳み込み層と同じ原理に基づく2つの新しい形態層を提示する。
本研究では, p-畳み込み層と同じ原理に基づく2つの新しい形態層を示す。
論文 参考訳(メタデータ) (2021-02-19T17:22:16Z) - DIFFnet: Diffusion parameter mapping network generalized for input
diffusion gradient schemes and bvalues [6.7487278071108525]
DIFFnetと呼ばれる新しいディープニューラルネットワークが開発され、拡散重み付けされた信号の一般化再構成ツールとして機能する。
DIFFnetは拡散テンソルイメージング(DIFFnetDTI)およびニューロライト配向分散と密度イメージング(DIFFnetNODDI)のために評価される。
その結果, ほぼ少ない処理時間で拡散パラメータの正確な再構成が得られた。
論文 参考訳(メタデータ) (2021-02-04T07:45:36Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Faster Differentially Private Samplers via R\'enyi Divergence Analysis
of Discretized Langevin MCMC [35.050135428062795]
ランゲヴィン力学に基づくアルゴリズムは、統計距離のようなある程度の距離測度の下で、はるかに高速な代替手段を提供する。
我々の手法は単純で汎用的で、アンダーダムドランゲヴィン力学に適用できる。
論文 参考訳(メタデータ) (2020-10-27T22:52:45Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
本稿では,ネットワークの自動プルーニングのためのハイパーネットによる識別可能なプルーニング手法を提案する。
遅延ベクトルは、バックボーンネットワーク内の畳み込み層の出力チャネルを制御し、レイヤのプルーニングのハンドルとして機能する。
画像分類、単一画像超解像、復調のための様々なネットワークで実験が行われた。
論文 参考訳(メタデータ) (2020-03-30T17:59:18Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。