論文の概要: Programming Refusal with Conditional Activation Steering
- arxiv url: http://arxiv.org/abs/2409.05907v1
- Date: Fri, 6 Sep 2024 15:47:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 22:10:02.850417
- Title: Programming Refusal with Conditional Activation Steering
- Title(参考訳): 条件付きアクティベーションステアリングによるプログラミングの拒絶
- Authors: Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Manish Nagireddy, Amit Dhurandhar,
- Abstract要約: 条件付きアクティベーションステアリング(CAST)は、推論中のLCMアクティベーションパターンを分析して、アクティベーションステアリングを選択的に適用または保持する。
CASTは、特定のコンテンツに対する応答を選択的に修正し、他のコンテンツに対する通常の応答を維持し、すべて重み付けの最適化を必要としない。
- 参考スコア(独自算出の注目度): 16.39054895786884
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: LLMs have shown remarkable capabilities, but precisely controlling their response behavior remains challenging. Existing activation steering methods alter LLM behavior indiscriminately, limiting their practical applicability in settings where selective responses are essential, such as content moderation or domain-specific assistants. In this paper, we propose Conditional Activation Steering (CAST), which analyzes LLM activation patterns during inference to selectively apply or withhold activation steering based on the input context. Our method is based on the observation that different categories of prompts activate distinct patterns in the model's hidden states. Using CAST, one can systematically control LLM behavior with rules like "if input is about hate speech or adult content, then refuse" or "if input is not about legal advice, then refuse." This allows for selective modification of responses to specific content while maintaining normal responses to other content, all without requiring weight optimization. We release an open-source implementation of our framework.
- Abstract(参考訳): LLMは目覚ましい能力を示したが、その反応の挙動を正確に制御することは依然として困難である。
既存のアクティベーションステアリング手法は、コンテンツモデレーションやドメイン固有のアシスタントなど、選択的な応答が不可欠である設定において、LCMの動作を非差別的に変更する。
本稿では,LLMの動作パターンを推論中に解析し,入力コンテキストに基づいてアクティベーションステアリングを選択的に適用または保留する条件付きアクティベーションステアリング(CAST)を提案する。
本手法は,モデルの隠蔽状態において,異なるカテゴリのプロンプトが異なるパターンを活性化することを示す。
CASTを使用することで、「もし入力がヘイトスピーチやアダルトコンテンツに関するものであるなら、拒否する」、あるいは「もし入力が法的助言に関するものではないなら、拒否する」といったルールで、LCMの動作を体系的に制御することができる。
これにより、重量最適化を必要とせず、他のコンテンツに対する通常の応答を維持しながら、特定のコンテンツに対する応答を選択的に修正することができる。
当社はフレームワークのオープンソース実装をリリースしています。
関連論文リスト
- LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
自然言語におけるモデルアクティベーションに関するオープンな疑問に答えるタスクであるLatentQAを紹介する。
本稿では,アクティベーションと関連する質問応答ペアのデータセット上で,デコーダLLMを微調整するLatent Interpretation Tuning (LIT)を提案する。
我々のデコーダはまた、ステレオタイプ付き文のモデルのデバイアス化や世代ごとの感情制御など、モデルを制御するために使用する差別化可能な損失も規定している。
論文 参考訳(メタデータ) (2024-12-11T18:59:33Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Controlling Large Language Model Agents with Entropic Activation Steering [20.56909601159833]
In-context Learning Agent のためのアクティベーションステアリングである Entropic Activation Steering (EAST) を導入する。
EAST は LLM の出力から解析された高レベルな動作に直接影響を与えることにより LLM エージェントの探索を効果的に操作できることを示す。
また, この制御を適用することで, LLMの思考に現れる不確実性を調節し, エージェントをより探索的な行動へと導くことも明らかにした。
論文 参考訳(メタデータ) (2024-06-01T00:25:00Z) - CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control [26.21425058462886]
大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
本稿では,適応的なRAGを表現的視点から解決し,固有な制御ベースフレームワークであるnameを開発するための最初の試みについて述べる。
実験により、名前は様々なタスクにおいて既存の適応RAG法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-29T03:17:16Z) - From Instructions to Constraints: Language Model Alignment with
Automatic Constraint Verification [70.08146540745877]
NLPタスクの共通制約を調査し、それらの引数の型に基づいて、それらを3つのクラスに分類する。
本稿では,ACT(ConsTraintsのアラインメント)という統合フレームワークを提案し,制約に適応したユーザアライメントのための監視信号を自動的に生成する。
論文 参考訳(メタデータ) (2024-03-10T22:14:54Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
言語モデル(LM)は、ラベル付き例や自然言語のプロンプトを使用してターゲットタスクを実行するように指示することができる。
タスク仕様プロセスのガイドには*LM自身を使うことを提案します。
我々は、メール検証、コンテンツレコメンデーション、道徳的推論の3つの領域でGATEを研究している。
論文 参考訳(メタデータ) (2023-10-17T21:11:21Z) - Intuitive or Dependent? Investigating LLMs' Behavior Style to
Conflicting Prompts [9.399159332152013]
本研究では,Large Language Models (LLM) の動作を,内部記憶と競合するプロンプトに直面する場合の挙動について検討する。
これにより、LLMの意思決定機構を理解し、検索強化生成(RAG)のような現実世界のアプリケーションにも役立つ。
論文 参考訳(メタデータ) (2023-09-29T17:26:03Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。