論文の概要: Steering Large Language Model Activations in Sparse Spaces
- arxiv url: http://arxiv.org/abs/2503.00177v1
- Date: Fri, 28 Feb 2025 20:43:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:14.169626
- Title: Steering Large Language Model Activations in Sparse Spaces
- Title(参考訳): スパース空間における大規模言語モデルの活性化のステアリング
- Authors: Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, Pascal Vincent,
- Abstract要約: AIアライメントにおける重要な課題は、テスト時に望ましい振る舞いに従うために、大きな言語モデル(LLM)を導くことである。
スパース・アクティベーション・ステアリング(SAS)はスパース・オートエンコーダ(SAE)を利用してスパース空間のステアリングを行う手法である。
- 参考スコア(独自算出の注目度): 21.55545768931058
- License:
- Abstract: A key challenge in AI alignment is guiding large language models (LLMs) to follow desired behaviors at test time. Activation steering, which modifies internal model activations during inference, offers a potential solution. However, prior work in dense activation spaces struggles with superposition, wherein multiple features become entangled, limiting interpretability and precise control. In contrast, sparse representations provide an untapped opportunity for more interpretable behavior modulation. In this work, we introduce sparse activation steering (SAS), a method that leverages sparse autoencoders (SAEs) to steer LLM behavior in sparse spaces. By isolating behavior-specific features through a contrastive prompt-pairing approach, we define a set of features that can selectively reinforce or suppress behaviors. Experiments on Gemma 2 LLMs show that SAS vectors enable nuanced behavioral modulation and finer-grained control. Furthermore, scaling SAEs improves monosemanticity of SAS vectors, suggesting more reliable and interpretable interventions.
- Abstract(参考訳): AIアライメントにおける重要な課題は、テスト時に望ましい振る舞いに従うために、大きな言語モデル(LLM)を導くことである。
推論中の内部モデルアクティベーションを変更するアクティベーションステアリングは、潜在的な解決策を提供する。
しかし、高密度活性化空間における先行研究は重畳に苦慮し、複数の特徴が絡み合うようになり、解釈可能性や正確な制御が制限される。
対照的にスパース表現は、より解釈可能な振る舞い変調のための未解決の機会を提供する。
本研究では,スパース・アクティベーション・ステアリング(SAS)を提案する。これはスパース・オートエンコーダ(SAE)を利用してスパース・スペースにおけるLCMの動作を操る手法である。
対照的なプロンプトペアリングアプローチにより,行動固有の特徴を分離することにより,行動の強化や抑制を選択的に行うことのできる特徴セットを定義する。
Gemma 2 LLMの実験により、SASベクトルは微妙な挙動変調とよりきめ細かい制御を可能にすることが示された。
さらに、SAEのスケーリングはSASベクトルの単意味性を改善し、より信頼性が高く解釈可能な介入を示唆している。
関連論文リスト
- Multi-Attribute Steering of Language Models via Targeted Intervention [56.93583799109029]
推論時間介入(ITI)は,大規模言語モデル(LLM)の振る舞いを特定の方向に操るための有望な手法として登場した。
マルチ属性・ターゲットステアリング(MAT-Steer)は,複数の属性をまたいだトークンレベルの選択的介入を目的とした,新しいステアリングフレームワークである。
論文 参考訳(メタデータ) (2025-02-18T02:27:23Z) - LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models [16.37602070339033]
LLM(Large Language Models)は、意味的に等価なパラフレーズ入力によって、しばしば一貫性のない応答を生成する。
セマンティック不整合の原因となる潜在特徴表現を正確に識別する新しいアクティベーションステアリング手法LF-ステアリングを提案する。
本手法は, 関連トランス層の隠蔽状態をスパースオートエンコーダに基づいて, 疎活性化された高次元特徴空間にマッピングする。
論文 参考訳(メタデータ) (2025-01-19T13:06:51Z) - On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages [56.22289522687125]
SSM(Selective State-space Model)はTransformerの代替品である。
正規言語タスクにおける表現性や長さの一般化性能を解析する。
本稿では,Selective Dense State-Space Model (SD-SSM)を紹介する。
論文 参考訳(メタデータ) (2024-12-26T20:53:04Z) - Refusal in LLMs is an Affine Function [1.722461331472526]
本稿では,アフィン概念編集 (ACE) を言語モデルの振る舞いを制御するためのアプローチとして提案する。
ACEはアフィン部分空間の投影とアクティベーションの追加を組み合わせて、モデルの拒絶反応を確実に制御する。
実験の結果、ACEは既存の手法よりもモデル動作をより正確に制御できることがわかった。
論文 参考訳(メタデータ) (2024-11-13T20:12:55Z) - Semantics-Adaptive Activation Intervention for LLMs via Dynamic Steering Vectors [8.761404991620285]
大規模言語モデル(LLM)の行動を修正するための効果的かつ経済的手法として活性化介入が出現した。
本稿では,モデルアクティベーションを推論時に介入するための動的ステアリングベクトルを構成する新しい手法であるSemantics-Adaptive Dynamic Intervention (SADI)を提案する。
実験結果から,SADIが確立したベースラインをかなりのマージンで上回り,トレーニングなしでのタスク性能が向上した。
論文 参考訳(メタデータ) (2024-10-16T06:58:49Z) - Improving Dictionary Learning with Gated Sparse Autoencoders [8.3037652157611]
Gated Sparse Autoencoder (Gated SAE)は、言語モデル(LM)アクティベーションにおける解釈可能な特徴を教師なしで発見する技術である。
SAEでは、スパーシリティを促進するために使われるL1ペナルティは、収縮のような望ましくないバイアスを多く導入する。
最大7BパラメータのLM上でSAEを訓練する際には、Gated SAEは収縮を解消し、同等の再現性を達成するのに半分の燃焼特性を必要とする。
論文 参考訳(メタデータ) (2024-04-24T17:47:22Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Steering Llama 2 via Contrastive Activation Addition [41.54815073311959]
コントラストアクティベーション付加(Contrastive Activation Addition、CAA)は、前方通過中にアクティベーションを変更することで言語モデルを操る手法である。
CAAは、Large Language Models (LLMs)において、どのようにハイレベルな概念が表現されるかを正確に判断し、明らかにする。
論文 参考訳(メタデータ) (2023-12-09T04:40:46Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - Diffusion-LM Improves Controllable Text Generation [80.50044830018442]
言語モデル(LM)の振る舞いを再学習せずに制御することは、自然言語生成において大きな問題である。
拡散-LMと呼ばれる連続拡散に基づく非自己回帰型言語モデルを開発した。
本研究では,6つのきめ細粒度制御タスクに対してDiffusion-LMの制御に成功したことを実証した。
論文 参考訳(メタデータ) (2022-05-27T20:12:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。