DEL-Ranking: Ranking-Correction Denoising Framework for Elucidating Molecular Affinities in DNA-Encoded Libraries
- URL: http://arxiv.org/abs/2410.14946v1
- Date: Sat, 19 Oct 2024 02:32:09 GMT
- Title: DEL-Ranking: Ranking-Correction Denoising Framework for Elucidating Molecular Affinities in DNA-Encoded Libraries
- Authors: Hanqun Cao, Chunbin Gu, Mutian He, Ning Ma, Chang-yu Hsieh, Pheng-Ann Heng,
- Abstract summary: DNA-encoded library (DEL) screening has revolutionized the detection of protein-ligand interactions through read counts.
noise in read counts, stemming from nonspecific interactions, can mislead this exploration process.
We present DEL-Ranking, a distribution-correction denoising framework that addresses these challenges.
- Score: 43.47251247740565
- License:
- Abstract: DNA-encoded library (DEL) screening has revolutionized the detection of protein-ligand interactions through read counts, enabling rapid exploration of vast chemical spaces. However, noise in read counts, stemming from nonspecific interactions, can mislead this exploration process. We present DEL-Ranking, a novel distribution-correction denoising framework that addresses these challenges. Our approach introduces two key innovations: (1) a novel ranking loss that rectifies relative magnitude relationships between read counts, enabling the learning of causal features determining activity levels, and (2) an iterative algorithm employing self-training and consistency loss to establish model coherence between activity label and read count predictions. Furthermore, we contribute three new DEL screening datasets, the first to comprehensively include multi-dimensional molecular representations, protein-ligand enrichment values, and their activity labels. These datasets mitigate data scarcity issues in AI-driven DEL screening research. Rigorous evaluation on diverse DEL datasets demonstrates DEL-Ranking's superior performance across multiple correlation metrics, with significant improvements in binding affinity prediction accuracy. Our model exhibits zero-shot generalization ability across different protein targets and successfully identifies potential motifs determining compound binding affinity. This work advances DEL screening analysis and provides valuable resources for future research in this area.
Related papers
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
Prediction of protein-ligand interactions (PLI) plays a crucial role in drug discovery.
The development of a versatile model capable of accurately scoring binding affinity and conducting efficient virtual screening remains a challenge.
Here, we propose a viable solution by introducing a novel data augmentation strategy combined with a physics-informed graph neural network.
arXiv Detail & Related papers (2023-07-03T14:46:49Z) - DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries [1.290382979353427]
We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes.
We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores.
arXiv Detail & Related papers (2022-11-30T22:00:24Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Machine learning on DNA-encoded library count data using an
uncertainty-aware probabilistic loss function [1.5559232742666467]
We show a regression approach to learning DEL enrichments of individual molecules using a custom negative log-likelihood loss function.
We illustrate this approach on a dataset of 108k compounds screened against CAIX, and a dataset of 5.7M compounds screened against sEH and SIRT2.
arXiv Detail & Related papers (2021-08-27T19:37:06Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.