Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
- URL: http://arxiv.org/abs/2409.06267v1
- Date: Tue, 10 Sep 2024 07:12:18 GMT
- Title: Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
- Authors: Tejas Anvekar, Shivanand Venkanna Sheshappanavar,
- Abstract summary: We discuss Mahalanobis k-NN: a statistical lens designed to address the challenges of feature matching in learning-based point cloud registration.
Our method can be seamlessly integrated into any local-graph-based point cloud analysis method.
We establish for the first time that the features acquired through point cloud registration inherently can possess discriminative capabilities.
- Score: 6.5252909392002785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we discuss Mahalanobis k-NN: a statistical lens designed to address the challenges of feature matching in learning-based point cloud registration when confronted with an arbitrary density of point clouds, either in the source or target point cloud. We tackle this by adopting Mahalanobis k-NN's inherent property to capture the distribution of the local neighborhood and surficial geometry. Our method can be seamlessly integrated into any local-graph-based point cloud analysis method. In this paper, we focus on two distinct methodologies: Deep Closest Point (DCP) and Deep Universal Manifold Embedding (DeepUME). Our extensive benchmarking on the ModelNet40 and Faust datasets highlights the efficacy of the proposed method in point cloud registration tasks. Moreover, we establish for the first time that the features acquired through point cloud registration inherently can possess discriminative capabilities. This is evident by a substantial improvement of about 20\% in the average accuracy observed in the point cloud few-shot classification task benchmarked on ModelNet40 and ScanObjectNN. The code is publicly available at https://github.com/TejasAnvekar/Mahalanobis-k-NN
Related papers
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning [72.07350827773442]
We propose to solve open-set point cloud learning using a novel Point Cut-and-Mix mechanism.
We use the Unknown-Point Simulator to simulate out-of-distribution data in the training stage.
The Unknown-Point Estimator module learns to exploit the point cloud's feature context for discriminating the known and unknown data.
arXiv Detail & Related papers (2022-12-05T03:53:51Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3D Point cloud registration is still a very challenging topic due to the difficulty in finding the rigid transformation between two point clouds.
In this paper, we present an end-to-end deep-learning based approach to resolve the point cloud registration problem.
arXiv Detail & Related papers (2020-11-30T06:55:05Z) - Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification [35.88116404702807]
The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40 datasets.
Results show it achieves state-of-the-art performance in shape classification tasks.
arXiv Detail & Related papers (2020-09-28T13:01:28Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.