Thermalization is typical in large classical and quantum harmonic systems
- URL: http://arxiv.org/abs/2409.06489v1
- Date: Tue, 10 Sep 2024 13:18:06 GMT
- Title: Thermalization is typical in large classical and quantum harmonic systems
- Authors: Marco Cattaneo, Marco Baldovin, Dario Lucente, Paolo Muratore-Ginanneschi, Angelo Vulpiani,
- Abstract summary: We prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems.
We show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems ($N \gg 1$) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Rigorous results on approach to thermal equilibrium, entanglement, and nonclassicality of an optical quantum field mode scattering from the elements of a non-equilibrium quantum reservoir [0.0]
Rigorous derivations of the approach of individual elements of large isolated systems to a state of thermal equilibrium, starting from arbitrary initial states, are exceedingly rare.
We demonstrate here how, through a mechanism of repeated scattering, an approach to equilibrium of this type actually occurs in a specific quantum system.
In particular, we consider an optical mode passing through a reservoir composed of a large number of sequentially-encountered modes of the same frequency.
arXiv Detail & Related papers (2023-12-21T20:46:06Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Solvable model of deep thermalization with distinct design times [0.0]
We study the emergence over time of a universal, uniform distribution of quantum states supported on a finite subsystem.
This phenomenon represents a form of equilibration in quantum many-body systems stronger than regular thermalization.
We present an exactly-solvable model of chaotic dynamics where the two processes can be shown to occur over different time scales.
arXiv Detail & Related papers (2022-08-22T18:43:45Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - About the computation of finite temperatureensemble averages of hybrid
quantum-classicalsystems with Molecular Dynamics [0.0]
We discuss alternative approaches for the computation of the equilibrium (canonical) ensemble averages for observables of hybrid quantum-classical systems.
Inspired by a recent formal derivation for the canonical ensemble for quantum classical hybrids, we discuss previous approaches found in the literature.
arXiv Detail & Related papers (2021-05-06T09:19:05Z) - On eigenstate thermalization in the SYK chain model [0.0]
Eigenstate thermalization hypothesis (ETH) explains how generic observables of individual isolated quantum systems in pure states can exhibit thermal behaviors.
We show that for two conventional few-body operators, the ensemble-averaged theory of the SYK chain model strictly satisfies ETH conditions.
arXiv Detail & Related papers (2021-04-12T08:50:24Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.