Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
- URL: http://arxiv.org/abs/2409.06530v3
- Date: Mon, 27 Jan 2025 12:44:23 GMT
- Title: Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
- Authors: Huaqing Zhang, Lesi Chen, Jing Xu, Jingzhao Zhang,
- Abstract summary: We show that the approximate optimal value of simple bilevel problems is not obtainable by first-order zero-respecting algorithms.
We propose a novel method by reformulating them into functionally constrained problems.
Our method achieves near-optimal rates for both smooth and nonsmooth problems.
- Score: 17.405138058942317
- License:
- Abstract: This paper studies simple bilevel problems, where a convex upper-level function is minimized over the optimal solutions of a convex lower-level problem. We first show the fundamental difficulty of simple bilevel problems, that the approximate optimal value of such problems is not obtainable by first-order zero-respecting algorithms. Then we follow recent works to pursue the weak approximate solutions. For this goal, we propose a novel method by reformulating them into functionally constrained problems. Our method achieves near-optimal rates for both smooth and nonsmooth problems. To the best of our knowledge, this is the first near-optimal algorithm that works under standard assumptions of smoothness or Lipschitz continuity for the objective functions.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - Constrained Bi-Level Optimization: Proximal Lagrangian Value function
Approach and Hessian-free Algorithm [8.479947546216131]
We develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
LV-HBA is especially well-suited for machine learning applications.
arXiv Detail & Related papers (2024-01-29T13:50:56Z) - Invex Programs: First Order Algorithms and Their Convergence [66.40124280146863]
Invex programs are a special kind of non-constrained problems which attain global minima at every stationary point.
We propose new first-order algorithms to solve general convergence rates in beyondvex problems.
Our proposed algorithm is the first algorithm to solve constrained invex programs.
arXiv Detail & Related papers (2023-07-10T10:11:01Z) - A Single-Loop Gradient Descent and Perturbed Ascent Algorithm for Nonconvex Functional Constrained Optimization [35.003192679045675]
Non constrained inequality problems can be used to model a number machine learning problems, such as multi-class Neyman oracle.
Under such a mild condition of regularity it is difficult to balance reduction alternating value loss and reduction constraint violation.
In this paper, we propose a novel primal-dual inequality constrained problems algorithm.
arXiv Detail & Related papers (2022-07-12T16:30:34Z) - A Conditional Gradient-based Method for Simple Bilevel Optimization with
Convex Lower-level Problem [18.15207779559351]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane.
Our method achieves best-known assumption for the considered class of bilevel problems.
arXiv Detail & Related papers (2022-06-17T16:12:47Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm [80.15123031136564]
We propose a robust method to align point sets where there is no prior information about the value of the transformation.
Our algorithm does not need regularization on transformation, and thus can handle the situation where there is no prior information about the values of the transformations.
Experimental results demonstrate the better robustness of the proposed method over state-of-the-art algorithms.
arXiv Detail & Related papers (2020-07-05T15:23:33Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.