論文の概要: Constructive Universal Approximation and Finite Sample Memorization by Narrow Deep ReLU Networks
- arxiv url: http://arxiv.org/abs/2409.06555v2
- Date: Tue, 24 Jun 2025 13:20:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.251768
- Title: Constructive Universal Approximation and Finite Sample Memorization by Narrow Deep ReLU Networks
- Title(参考訳): Narrow Deep ReLU ネットワークによる構成的普遍近似と有限サンプル記憶
- Authors: Martín Hernández, Enrique Zuazua,
- Abstract要約: 我々は$N$の異なる点を持つデータセットが$mathbbRd$と$M$の出力クラスを正確に分類できることを示した。
また、任意の有界領域に対して$Lp(Omega; mathbbRm)$の普遍近似定理も証明する。
我々の結果は、深層ニューラルネットワークにおける制御性、表現性、およびトレーニングのダイナミクスを接続する統一的で解釈可能なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a fully constructive analysis of deep ReLU neural networks for classification and function approximation tasks. First, we prove that any dataset with $N$ distinct points in $\mathbb{R}^d$ and $M$ output classes can be exactly classified using a multilayer perceptron (MLP) of width $2$ and depth at most $2N + 4M - 1$, with all network parameters constructed explicitly. This result is sharp with respect to width and is interpreted through the lens of simultaneous or ensemble controllability in discrete nonlinear dynamics. Second, we show that these explicit constructions yield uniform bounds on the parameter norms and, in particular, provide upper estimates for minimizers of standard regularized training loss functionals in supervised learning. As the regularization parameter vanishes, the trained networks converge to exact classifiers with bounded norm, explaining the effectiveness of overparameterized training in the small-regularization regime. We also prove a universal approximation theorem in $L^p(\Omega; \mathbb{R}_+)$ for any bounded domain $\Omega \subset \mathbb{R}^d$ and $p \in [1, \infty)$, using MLPs of fixed width $d + 1$. The proof is constructive, geometrically motivated, and provides explicit estimates on the network depth when the target function belongs to the Sobolev space $W^{1,p}$. We also extend the approximation and depth estimation results to $L^p(\Omega; \mathbb{R}^m)$ for any $m \geq 1$. Our results offer a unified and interpretable framework connecting controllability, expressivity, and training dynamics in deep neural networks.
- Abstract(参考訳): 本稿では,Deep ReLUニューラルネットワークの分類と関数近似のための完全に構成的な解析法を提案する。
まず、$N$の異なる点を持つ$\mathbb{R}^d$と$M$の出力クラスを持つデータセットは、幅2$と深さ2N + 4M − 1$の多層パーセプトロン(MLP)を用いて正確に分類でき、全てのネットワークパラメータが明示的に構成されていることを証明する。
この結果は幅に関して鋭く、離散非線形力学における同時あるいはアンサンブル制御性のレンズを通して解釈される。
第二に、これらの明示的な構成はパラメータノルムに一様境界を与え、特に、教師あり学習における標準正規化学習損失関数の最小化に対する上限推定を提供する。
正規化パラメータがなくなると、訓練されたネットワークは境界ノルムを持つ正確な分類器に収束し、小正規化システムにおける過パラメータ化トレーニングの有効性を説明する。
L^p(\Omega; \mathbb{R}_+)$ の任意の有界領域 $\Omega \subset \mathbb{R}^d$ および $p \in [1, \infty)$ に対する普遍近似定理も、固定幅 $d + 1$ の MLP を用いて証明する。
この証明は構成的で幾何学的な動機付けがあり、対象関数がソボレフ空間$W^{1,p}$に属するとき、ネットワーク深さについて明示的な推定を与える。
また、近似と深さ推定結果を任意の$m \geq 1$に対して$L^p(\Omega; \mathbb{R}^m)$に拡張する。
我々の結果は、深層ニューラルネットワークにおける制御性、表現性、およびトレーニングのダイナミクスを接続する統一的で解釈可能なフレームワークを提供する。
関連論文リスト
- Learning Networks from Wide-Sense Stationary Stochastic Processes [7.59499154221528]
ここでの重要な推論問題は、ノード出力(ポテンシャル)からエッジ接続を学習することである。
我々はWhittleの最大可能性推定器(MLE)を用いて時間相関サンプルから$Last$のサポートを学習する。
MLE問題は厳密な凸であり、ユニークな解であることを示す。
論文 参考訳(メタデータ) (2024-12-04T23:14:00Z) - New advances in universal approximation with neural networks of minimal width [4.424170214926035]
リークReLUアクティベーションを持つオートエンコーダは$Lp$関数の普遍近似器であることを示す。
我々は,滑らかな可逆ニューラルネットワークが$Lp(mathbbRd,mathbbRd)$をコンパクト化できることを示す。
論文 参考訳(メタデータ) (2024-11-13T16:17:16Z) - Implicit Hypersurface Approximation Capacity in Deep ReLU Networks [0.0]
本稿では,ReLUアクティベーションを用いたディープフィードフォワードニューラルネットワークの幾何近似理論を開発する。
幅$d+1$の深い完全連結ReLUネットワークは、そのゼロ輪郭として暗黙的に近似を構成することができることを示す。
論文 参考訳(メタデータ) (2024-07-04T11:34:42Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の勾配勾配勾配学習問題について検討する。
SGDに基づくアルゴリズムにより最適化された2層ニューラルネットワークは、情報指数に支配されない複雑さで$f_*$を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
我々は,完全連結ニューラルネットワークによるベイズ推定が解けることを示す物理レベルの厳密さを示す。
我々はモデルエビデンスを計算し、任意の温度で1/N$で任意の順序に後続する手法を提供する。
論文 参考訳(メタデータ) (2024-05-26T17:08:04Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
3層ニューラルネットワークを用いた標準ガウス分布における階層関数の学習問題について検討する。
次数$k$s$p$の大規模なサブクラスの場合、正方形損失における階層的勾配によるトレーニングを受けた3層ニューラルネットワークは、テストエラーを消すためにターゲット$h$を学習する。
この研究は、3層ニューラルネットワークが複雑な特徴を学習し、その結果、幅広い階層関数のクラスを学ぶ能力を示す。
論文 参考訳(メタデータ) (2023-11-23T02:19:32Z) - Rates of Approximation by ReLU Shallow Neural Networks [8.22379888383833]
隠れたニューロンが$m$のReLU浅部ニューラルネットワークは、H"古い空間からの関数を均一に近似できることを示す。
そのようなレートは$O(m-fracrd)$に非常に近いが、$fracd+2d+4d+4$は、$d$が大きければ1ドルに近いという意味では$O(m-fracrd)$である。
論文 参考訳(メタデータ) (2023-07-24T00:16:50Z) - Most Neural Networks Are Almost Learnable [52.40331776572531]
固定された$epsilon>0$とdeep $i$に対して、深さ$i$のランダムなXavierネットワークを学習するポリ時間アルゴリズムが存在することを示す。
このアルゴリズムは時間とサンプルの複雑さが$(bard)mathrmpoly(epsilon-1)$であり、$bar d$はネットワークのサイズである。
シグモイドやReLU様の活性化の場合、境界は$(bard)mathrmpolylog(eps)に改善できる。
論文 参考訳(メタデータ) (2023-05-25T22:27:42Z) - Generalization Ability of Wide Neural Networks on $\mathbb{R}$ [8.508360765158326]
広い2層ReLUニューラルネットワークのmathbbR$上での一般化能力について検討した。
$i)$幅$mrightarrowinfty$のとき、ニューラルネットワークカーネル(NNK)がNTKに均一に収束すると、$ii)$$$$K_1$のRKHSに対する回帰の最小値が$n-2/3$;$iii)$ 広義のニューラルネットワークをトレーニングする際に早期停止戦略を採用する場合、$ivとなる。
論文 参考訳(メタデータ) (2023-02-12T15:07:27Z) - Achieve the Minimum Width of Neural Networks for Universal Approximation [1.52292571922932]
ニューラルネットワークの普遍近似特性(UAP)について,最小幅の$w_min$について検討する。
特に、$Lp$-UAPの臨界幅$w*_min$は、漏洩ReLUネットワークによって達成できる。
論文 参考訳(メタデータ) (2022-09-23T04:03:50Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
本稿では、強化学習(RL)における深部神経機能近似の理論的研究について述べる。
我々は、Besov(およびBarron)関数空間によって与えられるディープ(および2層)ニューラルネットワークによる$epsilon$-greedy探索により、バリューベースのアルゴリズムに焦点を当てる。
我々の解析は、ある平均測度$mu$の上の$L2(mathrmdmu)$-integrable空間における時間差誤差を再構成し、非イド設定の下で一般化問題に変換する。
論文 参考訳(メタデータ) (2022-09-15T15:42:47Z) - On the Optimal Memorization Power of ReLU Neural Networks [53.15475693468925]
フィードフォワードReLUニューラルネットワークは、軽度の分離可能性仮定を満たす任意のN$ポイントを記憶することができることを示す。
このような大きなビットの複雑性を持つことは、サブ線形数のパラメータを記憶するのに必要であり、十分であることを示す。
論文 参考訳(メタデータ) (2021-10-07T05:25:23Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
2層ニューラルネットワークを学習する際の降下のダイナミクスについて考察する。
過度にパラメータ化された2層ニューラルネットワークは、タンジェントサンプルを用いて、ほとんどの地上で勾配損失を許容的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-09T07:09:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。