論文の概要: Advancing Android Privacy Assessments with Automation
- arxiv url: http://arxiv.org/abs/2409.06564v1
- Date: Tue, 10 Sep 2024 14:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 17:11:29.994191
- Title: Advancing Android Privacy Assessments with Automation
- Title(参考訳): Androidのプライバシアセスメントを自動化して改善する
- Authors: Mugdha Khedkar, Michael Schlichtig, Eric Bodden,
- Abstract要約: この論文は,Androidアプリにおけるデータ保護の理解を深める自動アプローチの必要性を動機付けている。
Assessor Viewは、Androidアプリケーションのより効果的なプライバシアセスメントを促進するために、これらのパーティ間の知識ギャップを埋めるように設計されたツールである。
- 参考スコア(独自算出の注目度): 5.863391019411233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Android apps collecting data from users must comply with legal frameworks to ensure data protection. This requirement has become even more important since the implementation of the General Data Protection Regulation (GDPR) by the European Union in 2018. Moreover, with the proposed Cyber Resilience Act on the horizon, stakeholders will soon need to assess software against even more stringent security and privacy standards. Effective privacy assessments require collaboration among groups with diverse expertise to function effectively as a cohesive unit. This paper motivates the need for an automated approach that enhances understanding of data protection in Android apps and improves communication between the various parties involved in privacy assessments. We propose the Assessor View, a tool designed to bridge the knowledge gap between these parties, facilitating more effective privacy assessments of Android applications.
- Abstract(参考訳): ユーザーからデータを収集するAndroidアプリは、データ保護を保証するための法的枠組みに従う必要がある。
2018年の欧州連合によるGDPR(General Data Protection Regulation)の実施以降、この要件はさらに重要になっている。
さらに、サイバーレジリエンス法(Cyber Resilience Act, サイバーレジリエンス法)が今後、利害関係者は、より厳格なセキュリティとプライバシの基準からソフトウェアを評価する必要がある。
効果的なプライバシー評価は、結束単位として効果的に機能するために、多様な専門知識を持つグループ間の協力を必要とする。
本稿では,Androidアプリにおけるデータ保護の理解を高め,プライバシー評価に関わるさまざまな関係者間のコミュニケーションを改善する自動アプローチの必要性を動機づける。
Assessor Viewは、これらのパーティ間の知識ギャップを埋め、Androidアプリケーションのより効果的なプライバシアアセスメントを促進するために設計されたツールである。
関連論文リスト
- Balancing Innovation and Privacy: Data Security Strategies in Natural Language Processing Applications [3.380276187928269]
本研究では,差分プライバシーに基づく新しいアルゴリズムを導入することにより,自然言語処理(NLP)におけるプライバシ保護に対処する。
差分プライバシー機構を導入することにより、ランダムノイズを付加しながらデータ解析結果の精度と信頼性を確保することができる。
提案アルゴリズムの有効性は、精度(0.89)、精度(0.85)、リコール(0.88)などの性能指標によって実証される。
論文 参考訳(メタデータ) (2024-10-11T06:05:10Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
この研究は、データ共有とモデル公開の間、画像データのプライバシーを同時に保護する包括的なプライバシー保護フレームワークのパイオニアだ。
本稿では、生成機械学習モデルを用いて属性レベルで画像情報を修正するインタラクティブな画像プライバシー保護フレームワークを提案する。
本フレームワークでは、画像中の属性情報を保護する差分プライバシー拡散モデルと、修正された画像データセット上でトレーニングされたモデルの効率的な更新を行う特徴未学習アルゴリズムの2つのモジュールをインスタンス化する。
論文 参考訳(メタデータ) (2024-09-05T07:55:55Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - AI-Driven Anonymization: Protecting Personal Data Privacy While
Leveraging Machine Learning [5.015409508372732]
本稿では、個人データのプライバシー保護と匿名化の促進を研究の中心的目的とする。
機械学習の差分プライバシー保護アルゴリズムを使用して、個人データのプライバシ保護と検出を実現する。
また、プライバシと個人データ保護に関連する機械学習の既存の課題に対処し、改善提案を提供し、データセットに影響を与える要因を分析して、タイムリーな個人データプライバシ検出と保護を可能にする。
論文 参考訳(メタデータ) (2024-02-27T04:12:25Z) - Experts-in-the-Loop: Establishing an Effective Workflow in Crafting
Privacy Q&A [0.0]
プライバシポリシをプライバシ質問応答(Q&A)ペアに変換する動的ワークフローを提案する。
そこで我々は,法の専門家と会話デザイナーの学際的なコラボレーションを促進する。
提案するワークフローは,プライバシQ&Aの構築を通じて継続的改善と監視の基盤となる。
論文 参考訳(メタデータ) (2023-11-18T20:32:59Z) - Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement [0.0]
この研究は、プライバシを優先し、情報に基づく意思決定を促進し、プライバシ保護設計原則を支持したデジタル環境に貢献することを目的としている。
このフレームワークの目的は、特定のAndroidアプリケーションを使用する際のプライバシーリスクのレベルを体系的に評価することである。
論文 参考訳(メタデータ) (2023-10-31T18:12:19Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
我々は、人間の行動認識パイプラインに沿って、堅牢な視覚的プライバシー保護を提供するための最適化フレームワークを提案する。
我々のフレームワークは、カメラレンズをパラメータ化して、ビデオの品質を劣化させ、プライバシー特性を抑え、敵の攻撃を防ぎます。
論文 参考訳(メタデータ) (2022-06-08T13:43:29Z) - An Example of Privacy and Data Protection Best Practices for Biometrics
Data Processing in Border Control: Lesson Learned from SMILE [0.9442139459221784]
データの誤用、個人のプライバシーの妥協、および/または承認されたデータの処理は不可逆である。
これは部分的には、システム開発プロセスにおける設計によるデータ保護とプライバシの統合のための方法やガイダンスの欠如によるものである。
データコントローラと開発者のためのガイダンスを提供するために、プライバシーとデータ保護のベストプラクティスの例を示す。
論文 参考訳(メタデータ) (2022-01-10T15:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。