HybridFC: A Hybrid Fact-Checking Approach for Knowledge Graphs
- URL: http://arxiv.org/abs/2409.06692v1
- Date: Tue, 10 Sep 2024 17:55:00 GMT
- Title: HybridFC: A Hybrid Fact-Checking Approach for Knowledge Graphs
- Authors: Umair Qudus, Michael Roeder, Muhammad Saleem, Axel-Cyrille Ngonga Ngomo,
- Abstract summary: We consider fact-checking approaches that aim to predict the veracity of assertions in knowledge graphs.
We propose a hybrid approach -- dubbed HybridFC -- that exploits the diversity of existing categories of fact-checking approaches.
Our approach outperforms the state of the art by 0.14 to 0.27 in terms of Area Under the Receiver Operating Characteristic curve on the FactBench dataset.
- Score: 2.2724158483142363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider fact-checking approaches that aim to predict the veracity of assertions in knowledge graphs. Five main categories of fact-checking approaches for knowledge graphs have been proposed in the recent literature, of which each is subject to partially overlapping limitations. In particular, current text-based approaches are limited by manual feature engineering. Path-based and rule-based approaches are limited by their exclusive use of knowledge graphs as background knowledge, and embedding-based approaches suffer from low accuracy scores on current fact-checking tasks. We propose a hybrid approach -- dubbed HybridFC -- that exploits the diversity of existing categories of fact-checking approaches within an ensemble learning setting to achieve a significantly better prediction performance. In particular, our approach outperforms the state of the art by 0.14 to 0.27 in terms of Area Under the Receiver Operating Characteristic curve on the FactBench dataset. Our code is open-source and can be found at https://github.com/dice-group/HybridFC.
Related papers
- Improving rule mining via embedding-based link prediction [2.422410293747519]
Rule mining on knowledge graphs allows for explainable link prediction.
Several approaches combining the two families have been proposed in recent years.
We propose a new way to combine the two families of approaches.
arXiv Detail & Related papers (2024-06-14T15:53:30Z) - Learning from Litigation: Graphs and LLMs for Retrieval and Reasoning in eDiscovery [6.037276428689637]
This paper introduces DISCOvery Graph (DISCOG), a hybrid approach that combines the strengths of two worlds: a graph-based method for accurate document relevance prediction.
Our approach drastically reduces document review costs by 99.9% compared to manual processes and by 95% compared to LLM-based classification methods.
arXiv Detail & Related papers (2024-05-29T15:08:55Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Improving Link Prediction in Social Networks Using Local and Global
Features: A Clustering-based Approach [0.0]
We propose an approach based on the combination of first and second group methods to tackle the link prediction problem.
Our two-phase developed method firstly determines new features related to the position and dynamic behavior of nodes.
Then, a subspace clustering algorithm is applied to group social objects based on the computed similarity measures.
arXiv Detail & Related papers (2023-05-17T14:45:02Z) - Okapi: Generalising Better by Making Statistical Matches Match [7.392460712829188]
Okapi is a simple, efficient, and general method for robust semi-supervised learning based on online statistical matching.
Our method uses a nearest-neighbours-based matching procedure to generate cross-domain views for a consistency loss.
We show that it is in fact possible to leverage additional unlabelled data to improve upon empirical risk minimisation.
arXiv Detail & Related papers (2022-11-07T12:41:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z) - Progressive Graph Learning for Open-Set Domain Adaptation [48.758366879597965]
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions.
In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data.
We introduce an end-to-end Progressive Graph Learning framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift.
arXiv Detail & Related papers (2020-06-22T09:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.