Learning from Litigation: Graphs and LLMs for Retrieval and Reasoning in eDiscovery
- URL: http://arxiv.org/abs/2405.19164v1
- Date: Wed, 29 May 2024 15:08:55 GMT
- Title: Learning from Litigation: Graphs and LLMs for Retrieval and Reasoning in eDiscovery
- Authors: Sounak Lahiri, Sumit Pai, Tim Weninger, Sanmitra Bhattacharya,
- Abstract summary: This paper introduces DISCOvery Graph (DISCOG), a hybrid approach that combines the strengths of two worlds: a graph-based method for accurate document relevance prediction.
Our approach drastically reduces document review costs by 99.9% compared to manual processes and by 95% compared to LLM-based classification methods.
- Score: 6.037276428689637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic Discovery (eDiscovery) involves identifying relevant documents from a vast collection based on legal production requests. The integration of artificial intelligence (AI) and natural language processing (NLP) has transformed this process, helping document review and enhance efficiency and cost-effectiveness. Although traditional approaches like BM25 or fine-tuned pre-trained models are common in eDiscovery, they face performance, computational, and interpretability challenges. In contrast, Large Language Model (LLM)-based methods prioritize interpretability but sacrifice performance and throughput. This paper introduces DISCOvery Graph (DISCOG), a hybrid approach that combines the strengths of two worlds: a heterogeneous graph-based method for accurate document relevance prediction and subsequent LLM-driven approach for reasoning. Graph representational learning generates embeddings and predicts links, ranking the corpus for a given request, and the LLMs provide reasoning for document relevance. Our approach handles datasets with balanced and imbalanced distributions, outperforming baselines in F1-score, precision, and recall by an average of 12%, 3%, and 16%, respectively. In an enterprise context, our approach drastically reduces document review costs by 99.9% compared to manual processes and by 95% compared to LLM-based classification methods
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
This study introduces a novel methodology that integrates human annotators and Large Language Models.
The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels.
The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
arXiv Detail & Related papers (2024-06-17T21:45:48Z) - Prompt-based vs. Fine-tuned LLMs Toward Causal Graph Verification [0.0]
This work aims toward an application of natural language processing (NLP) technology for automatic verification of causal graphs using text sources.
We compare the performance of two types of NLP models: (1) pre-trained language models fine-tuned for causal relation classification task and, (2) prompt-based LLMs.
arXiv Detail & Related papers (2024-05-29T09:06:18Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing [24.685942503019948]
We introduce a novel approach that harnesses the power of a large language model (LLM) to provide a confidence score on the generated answer.
We experiment with our approach on two graph processing tasks: few-shot knowledge graph completion and graph classification.
Our confidence measure achieves an AUC of 0.8 or higher on seven out of the ten datasets in predicting the correctness of the answer generated by LLM.
arXiv Detail & Related papers (2024-03-31T07:38:39Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.