論文の概要: Generative AI for Requirements Engineering: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2409.06741v1
- Date: Tue, 10 Sep 2024 02:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:44:43.272137
- Title: Generative AI for Requirements Engineering: A Systematic Literature Review
- Title(参考訳): 要求工学のための生成AI: 体系的文献レビュー
- Authors: Haowei Cheng, Jati H. Husen, Sien Reeve Peralta, Bowen Jiang, Nobukazu Yoshioka, Naoyasu Ubayashi, Hironori Washizaki,
- Abstract要約: ジェネレーティブAI(GenAI)は、ソフトウェア工学におけるトランスフォーメーションツールとして登場した。
本稿では、要件工学におけるGenAIを活用した最先端の応用と革新的な提案について分析する。
- 参考スコア(独自算出の注目度): 4.056534128718579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Generative AI (GenAI) has emerged as a transformative tool in software engineering, with requirements engineering (RE) actively exploring its potential to revolutionize processes and outcomes. The integration of GenAI into RE presents both promising opportunities and significant challenges that necessitate systematic analysis and evaluation. Objective: This paper presents a comprehensive systematic literature review (SLR) analyzing state-of-the-art applications and innovative proposals leveraging GenAI in RE. It surveys studies focusing on the utilization of GenAI to enhance RE processes while identifying key challenges and opportunities in this rapidly evolving field. Method: A rigorous SLR methodology was used to analyze 27 carefully selected primary studies in-depth. The review examined research questions pertaining to the application of GenAI across various RE phases, the models and techniques used, and the challenges encountered in implementation and adoption. Results: The most salient findings include i) a predominant focus on the early stages of RE, particularly the elicitation and analysis of requirements, indicating potential for expansion into later phases; ii) the dominance of large language models, especially the GPT series, highlighting the need for diverse AI approaches; and iii) persistent challenges in domain-specific applications and the interpretability of AI-generated outputs, underscoring areas requiring further research and development. Conclusions: The results highlight the critical need for comprehensive evaluation frameworks, improved human-AI collaboration models, and thorough consideration of ethical implications in GenAI-assisted RE. Future research should prioritize extending GenAI applications across the entire RE lifecycle, enhancing domain-specific capabilities, and developing strategies for responsible AI integration in RE practices.
- Abstract(参考訳): コンテキスト: 生成AI(GenAI)はソフトウェアエンジニアリングの変革的ツールとして登場し、要件エンジニアリング(RE)はプロセスや成果に革命をもたらす可能性を積極的に探求している。
GenAIのREへの統合は、体系的な分析と評価を必要とする有望な機会と重要な課題の両方を提示します。
目的:本論文では,REにおけるGenAIを活用した最先端のアプリケーションと革新的な提案を総合的な体系的文献レビュー(SLR)で分析する。
急速に発展する分野における重要な課題と機会を特定しながら、REプロセスを強化するためにGenAIの利用に焦点を当てた研究を調査する。
方法: 厳密なSLR法を用いて, 慎重に選抜された27の初等研究を詳細に分析した。
本稿では,さまざまなREフェーズにおけるGenAIの適用,使用するモデルと技術,実装と採用における課題について検討した。
結果:最も顕著な発見は,以下のとおりである。
一 後段への拡大の可能性を示すREの初期段階、特に要件の実施及び分析に主眼を置いていること。
二 多様なAIアプローチの必要性を強調した大規模言語モデル、特にGPTシリーズの優位性
三 ドメイン固有の応用における永続的な課題及びAI生成出力の解釈可能性であって、さらなる研究・開発を必要とする分野を強調すること。
結論: 結果は、総合的な評価フレームワークの必要性、人間とAIのコラボレーションモデルの改善、およびGenAI支援REにおける倫理的意味の徹底的な考察を浮き彫りにした。
将来の研究は、REライフサイクル全体にわたってGenAIアプリケーションを拡張し、ドメイン固有の機能を強化し、REプラクティスにおける責任あるAI統合のための戦略を開発することを優先すべきである。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - AI for ERW Detection in Clearance Operations -- The State of Research [12.278116747610158]
本稿では、クリアランス操作のためのERW検出のためのAIに関する学術研究の文献レビューを提供する。
研究は、ERWオブジェクト検出のためのAIとERWリスク予測のためのAIの2つの主要なストリームにグループ化できる。
我々は、ERWリスク予測にAIを使用するための新たな取り組みを含む、将来の研究のための3つの機会を開拓する。
論文 参考訳(メタデータ) (2024-10-31T11:50:29Z) - Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
ジェネレーティブAIは、健康経済学と成果研究(HEOR)において大きな可能性を秘めている
生成AIは、HEORに大きな可能性を示し、効率性、生産性を高め、複雑な課題に対する新しいソリューションを提供する。
ファウンデーションモデルは複雑なタスクを自動化する上で有望だが、科学的信頼性、バイアス、解釈可能性、ワークフローの統合には課題が残っている。
論文 参考訳(メタデータ) (2024-10-26T15:42:50Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
論文 参考訳(メタデータ) (2024-08-13T13:10:03Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
進化的強化学習(ERL)は進化的アルゴリズム(EA)と強化学習(RL)を統合して最適化する。
本調査では,ERLの多様な研究分野について概観する。
論文 参考訳(メタデータ) (2024-01-22T14:06:37Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。