論文の概要: AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis
- arxiv url: http://arxiv.org/abs/2401.10895v5
- Date: Thu, 27 Feb 2025 22:51:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 18:45:48.586038
- Title: AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis
- Title(参考訳): AI in supply Chain Risk Assessment: Asystematic Literature Review and Bibliometric Analysis
- Authors: Md Abrar Jahin, Saleh Akram Naife, Anik Kumar Saha, M. F. Mridha,
- Abstract要約: 本研究では,Google Scholar and Web of Scienceの1,903項目をPRISMAガイドラインで選択した54項目について検討した。
その結果,ランダムフォレスト,XGBoost,ハイブリッドアプローチなどのMLモデルは,パンデミック後の文脈におけるリスク予測精度と適応性を大幅に向上させることがわかった。
この研究は、データ品質や解釈可能性といった課題に対処するために、動的な戦略、学際的なコラボレーション、継続的なモデル評価の必要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supply chain risk assessment (SCRA) is pivotal for ensuring resilience in increasingly complex global supply networks. While existing reviews have explored traditional methodologies, they often neglect emerging artificial intelligence (AI) and machine learning (ML) applications and mostly lack combined systematic and bibliometric analyses. This study addresses these gaps by integrating a systematic literature review with bibliometric analysis, examining 1,903 articles (2015-2025) from Google Scholar and Web of Science, with 54 studies selected through PRISMA guidelines. Our findings reveal that ML models, including Random Forest, XGBoost, and hybrid approaches, significantly enhance risk prediction accuracy and adaptability in post-pandemic contexts. The bibliometric analysis identifies key trends, influential authors, and institutional contributions, highlighting China and the United States as leading research hubs. Practical insights emphasize the integration of explainable AI (XAI) for transparent decision-making, real-time data utilization, and blockchain for traceability. The study underscores the necessity of dynamic strategies, interdisciplinary collaboration, and continuous model evaluation to address challenges such as data quality and interpretability. By synthesizing AI-driven methodologies with resilience frameworks, this review provides actionable guidance for optimizing supply chain risk management, fostering adaptability, and informing future research in evolving risk landscapes.
- Abstract(参考訳): サプライチェーンリスクアセスメント(SCRA)は、ますます複雑なグローバルサプライネットワークにおけるレジリエンスを確保するために重要である。
既存のレビューでは従来の方法論を探求しているが、新しい人工知能(AI)と機械学習(ML)の応用は無視されることが多く、主に体系的および書誌的分析を欠いている。
本研究は,Google ScholarとWeb of Scienceの1,903記事(2015-2025)をPRISMAガイドラインで選択した54の論文を用いて,体系的な文献レビューと書誌分析を統合することで,これらのギャップに対処する。
その結果,ランダムフォレスト,XGBoost,ハイブリッドアプローチなどのMLモデルは,パンデミック後の文脈におけるリスク予測精度と適応性を大幅に向上させることがわかった。
文献分析は、主要なトレンド、影響力のある著者、機関的な貢献を特定し、中国と米国を主要な研究拠点として強調している。
現実的な洞察は、透明な意思決定、リアルタイムデータ利用、トレーサビリティのためのブロックチェーンのための説明可能なAI(XAI)の統合を強調している。
この研究は、データ品質や解釈可能性といった課題に対処するために、動的な戦略、学際的なコラボレーション、継続的なモデル評価の必要性を強調している。
このレビューは、AI駆動の方法論をレジリエンスフレームワークに合成することにより、サプライチェーンのリスク管理を最適化し、適応性を高め、リスクランドスケープの進化における将来の研究を知らせるための実用的なガイダンスを提供する。
関連論文リスト
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
本稿では,生成型AIツールの利用の増加に伴って生じる複雑な情報ダイナミクスについて,新たな定量的アプローチを提案する。
本稿では,新たなトピックに応答して情報の生成,索引付け,普及を特徴付けるモデルを提案する。
以上の結果から,AI導入の急激なペースとユーザ依存度の増加は,不正確な情報拡散のリスクを増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-29T10:21:40Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges [20.407534993667607]
リソース制約は効果的な脆弱性優先順位付け戦略を必要とする。
本稿では,メトリクスを重大度,悪用性,文脈要因,予測指標,集約手法に分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2025-02-16T10:33:37Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
先進的な生成AIを駆使した大規模言語モデル(LLM)がトランスフォーメーションツールとして登場した。
本研究は, LLMを用いた定性的研究に関する文献を体系的にマッピングする。
LLMは様々な分野にまたがって利用されており、プロセスの自動化の可能性を示している。
論文 参考訳(メタデータ) (2024-11-18T21:28:00Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches [0.0]
我々は、生成AIの導入による経済的および社会的影響を予測するのに使用される主要な方法論を特定する。
総合的な文献レビューを通じて、我々はこの技術革命の多面的影響を評価するための様々な方法論を明らかにした。
論文 参考訳(メタデータ) (2024-11-14T09:40:25Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
心肺蘇生(CPR)における機械学習(ML)と人工知能(AI)の変革的役割について検討する。
再現結果を改善する上で、予測モデリング、AI強化デバイス、リアルタイムデータ分析の影響を強調している。
本稿は、この新興分野における現在の応用、課題、今後の方向性に関する包括的概要、分類、および批判的分析を提供する。
論文 参考訳(メタデータ) (2024-11-03T18:01:50Z) - AI for ERW Detection in Clearance Operations -- The State of Research [12.278116747610158]
本稿では、クリアランス操作のためのERW検出のためのAIに関する学術研究の文献レビューを提供する。
研究は、ERWオブジェクト検出のためのAIとERWリスク予測のためのAIの2つの主要なストリームにグループ化できる。
我々は、ERWリスク予測にAIを使用するための新たな取り組みを含む、将来の研究のための3つの機会を開拓する。
論文 参考訳(メタデータ) (2024-10-31T11:50:29Z) - Machine Learning for Missing Value Imputation [0.0]
本論文の主な目的は、ミス・バリュー・インプットにおける最先端の機械学習アプリケーションの解析と同様に、包括的で厳密なレビューを行うことである。
2014年から2023年にかけて発行された100以上の記事が、その方法や発見を考慮して批判的にレビューされている。
最新の文献は,MVI法の動向とその評価を精査するために検討されている。
論文 参考訳(メタデータ) (2024-10-10T18:56:49Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Harnessing AI for efficient analysis of complex policy documents: a case study of Executive Order 14110 [44.99833362998488]
法律、規制、執行命令などの政策文書は、社会の形成に不可欠である。
本研究の目的は、政策分析の合理化におけるAIの可能性を評価し、現在のAIアプローチの強みと限界を特定することである。
論文 参考訳(メタデータ) (2024-06-10T11:19:28Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Unleashing the Power of AI. A Systematic Review of Cutting-Edge Techniques in AI-Enhanced Scientometrics, Webometrics, and Bibliometrics [1.2374541748245838]
この研究は、人工知能(AI)のシナジーを、サイエントメトリックス、webometrics、Bibliometricsで分析することを目的としている。
我々の目的は、学術的なコミュニケーションを計測し分析するための方法に革命をもたらすAIの可能性を探ることである。
論文 参考訳(メタデータ) (2024-02-22T15:10:02Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context Learning (ICL)は、新しいタスクに適応する革新的な能力として認識されている。
本論文は、ICLのデータ中毒に対する感受性の重大な問題について述べる。
ICLの学習メカニズムを活用するために考案された特殊攻撃フレームワークであるICLPoisonを紹介する。
論文 参考訳(メタデータ) (2024-02-03T14:20:20Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
このレビューは、2019年1月から2024年3月までに発行された220の科学論文に基づいている。
著者らは、研究の類似点と特異点を解釈し、強調するために分類フレームワークを採用している。
論文 参考訳(メタデータ) (2023-09-27T19:22:19Z) - Unified Risk Analysis for Weakly Supervised Learning [65.75775694815172]
弱教師付き学習のための包括的理解と統一的方法論を提供する枠組みを導入する。
フレームワークの定式化コンポーネントは、汚染の観点から、どのように弱い監督が形成されるかの統一的な解釈を提供する。
フレームワークの分析コンポーネントは、汚染除去プロセスと見なされ、リスクの書き直しを行う体系的な方法を提供する。
論文 参考訳(メタデータ) (2023-09-15T07:30:15Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。