論文の概要: Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies
- arxiv url: http://arxiv.org/abs/2408.06872v1
- Date: Tue, 13 Aug 2024 13:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 17:26:52.281329
- Title: Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies
- Title(参考訳): 学術研究におけるジェネレーティブAIツール:質的・定量的研究方法論の応用と意義
- Authors: Mike Perkins, Jasper Roe,
- Abstract要約: 本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis. As GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes. However, their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work. Through an examination of current capabilities and potential future applications, this study provides insights into how researchers may utilise GenAI tools responsibly and ethically. We present case studies that demonstrate the application of GenAI in various research methodologies, discuss the challenges of replicability and consistency in AI-assisted research, and consider the ethical implications of increased AI integration in academia. This study explores both qualitative and quantitative applications of GenAI, highlighting tools for transcription, coding, thematic analysis, visual analytics, and statistical analysis. By addressing these issues, we aim to contribute to the ongoing discourse on the role of AI in shaping the future of academic research and provide guidance for researchers exploring the rapidly evolving landscape of AI-assisted research tools and research.
- Abstract(参考訳): 本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的,定量的なデータ分析への応用に焦点をあてる。
GenAIツールは急速に進化するにつれて、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
しかし、学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
この研究は、現在の能力と将来的な応用の検証を通じて、研究者がどのようにGenAIツールを責任と倫理的に活用するかについての洞察を提供する。
本稿では,GenAIの様々な研究方法論への応用を実証し,AI支援研究における複製性と一貫性の課題について議論し,学術におけるAI統合の増大による倫理的意味について考察する。
本研究は,GenAIの質的・定量的な応用と,転写,コーディング,主題解析,視覚分析,統計解析のツールの強調について検討する。
これらの課題に対処することで、学術研究の未来を形作る上でAIの役割について現在進行中の談話に貢献し、AI支援研究ツールや研究の急速な発展を探求する研究者にガイダンスを提供することを目指している。
関連論文リスト
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
ジェネレーティブAIは、健康経済学と成果研究(HEOR)において大きな可能性を秘めている
生成AIは、HEORに大きな可能性を示し、効率性、生産性を高め、複雑な課題に対する新しいソリューションを提供する。
ファウンデーションモデルは複雑なタスクを自動化する上で有望だが、科学的信頼性、バイアス、解釈可能性、ワークフローの統合には課題が残っている。
論文 参考訳(メタデータ) (2024-10-26T15:42:50Z) - Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing [25.572926673827165]
このケーススタディは、学術的な仕事において、責任と効果的なAI統合を保証するためのAIの限界を認識し、設計、出力分析、そして認識することの重要性を強調します。
この論文は、効果的なプロンプト戦略を探求し、Gen AIモデルの比較分析を提供することにより、ヒューマン・コンピュータインタラクションの分野に貢献する。
論文 参考訳(メタデータ) (2024-04-23T19:06:39Z) - The collective use and perceptions of generative AI tools in digital humanities research: Survey-based results [0.6906005491572401]
創造的な人工知能技術は、デジタルヒューマニティに重要な意味を持つ研究環境に革命をもたらした。
本稿では、DH研究者がChatGPTなどの生成AI技術を研究に採用し、批判的に評価する方法について考察する。
論文 参考訳(メタデータ) (2024-04-18T18:33:00Z) - Generative Artificial Intelligence in Learning Analytics:
Contextualising Opportunities and Challenges through the Learning Analytics
Cycle [0.0]
ジェネレーティブ人工知能(GenAI)は、教育を変革し、人間の生産性を高める大きな可能性を秘めている。
本稿では,GenAIが学習分析(LA)にもたらす可能性と課題について述べる。
我々は、GenAIが非構造化データの解析、合成学習データの生成、マルチモーダル学習者相互作用の強化、対話的・説明的分析の進展、パーソナライゼーションと適応的介入の促進において重要な役割を果たすことを示唆する。
論文 参考訳(メタデータ) (2023-11-30T07:25:34Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
2005年から2020年にかけて出版された405の出版物は、5つの主要な研究トピック、31のサブトピックにマップされています。
少数の出版物がデータ管理とモデル生産の問題に焦点を合わせており、より多くの研究が全体論的観点からAIライフサイクルに対処すべきであると考えている。
論文 参考訳(メタデータ) (2021-03-11T11:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。