論文の概要: Applying Multi-Fidelity Bayesian Optimization in Chemistry: Open Challenges and Major Considerations
- arxiv url: http://arxiv.org/abs/2409.07190v1
- Date: Wed, 11 Sep 2024 11:22:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:49:40.622037
- Title: Applying Multi-Fidelity Bayesian Optimization in Chemistry: Open Challenges and Major Considerations
- Title(参考訳): 化学におけるマルチフィデリティベイズ最適化の適用:オープンチャレンジと主な考察
- Authors: Edmund Judge, Mohammed Azzouzi, Austin M. Mroz, Antonio del Rio Chanona, Kim E. Jelfs,
- Abstract要約: MFBO(Multifidelity Bayesian Optimization)は、所望の最大コストに最適化するために、様々な品質とリソースコストの実験的あるいは計算的なデータを活用する。
本稿では,MFBOの分子や物質の同定を高速化するための応用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi fidelity Bayesian optimization (MFBO) leverages experimental and or computational data of varying quality and resource cost to optimize towards desired maxima cost effectively. This approach is particularly attractive for chemical discovery due to MFBO's ability to integrate diverse data sources. Here, we investigate the application of MFBO to accelerate the identification of promising molecules or materials. We specifically analyze the conditions under which lower fidelity data can enhance performance compared to single-fidelity problem formulations. We address two key challenges, selecting the optimal acquisition function, understanding the impact of cost, and data fidelity correlation. We then discuss how to assess the effectiveness of MFBO for chemical discovery.
- Abstract(参考訳): MFBO(Multifidelity Bayesian Optimization)は、所望の最大コストに最適化するために、様々な品質とリソースコストの実験的あるいは計算的なデータを活用する。
このアプローチは、様々なデータソースを統合するMFBOの能力のため、特に化学発見にとって魅力的である。
本稿では,MFBOの分子や物質の同定を高速化するための応用について検討する。
本研究では,低忠実度データが単一忠実度問題の定式化よりも性能を向上させる条件を具体的に分析する。
本稿では,最適取得関数の選択,コストの影響の理解,データの忠実度相関という2つの課題に対処する。
次に,化学発見におけるMFBOの有効性について検討する。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Best Practices for Multi-Fidelity Bayesian Optimization in Materials and Molecular Research [23.891927943934768]
MFBO(Multi-fidelity Bayesian Optimization)は、物質や分子の発見を高速化するためのフレームワークである。
化学的タスクに使用される可能性があるが、MFBOで果たす多くのパラメータの体系的な評価が欠如している。
実験環境でMFBOをいつ使用するかを決めるためのガイドラインと勧告を提供する。
論文 参考訳(メタデータ) (2024-10-01T09:37:36Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward Hacking(報酬の過度な最適化)は依然として重要な課題だ。
本稿では,報奨モデル,すなわちInfoRMのためのフレームワークを提案する。
InfoRMの過度な最適化検出機構は、有効であるだけでなく、幅広いデータセットにわたって堅牢であることを示す。
論文 参考訳(メタデータ) (2024-02-14T17:49:07Z) - Physics-Aware Multifidelity Bayesian Optimization: a Generalized Formulation [0.0]
MFBO(Multifidelity Bayesian Method)は、クエリのサブセレクションのみに対して、コストの高い高忠実度応答を組み込むことができる。
State-of-the-artメソッドは純粋にデータ駆動型検索に依存しており、物理的なコンテキストに関する明示的な情報は含まない。
本稿では、これらのデータ駆動探索を高速化するために、工学的問題の物理領域に関する事前知識を活用することができることを認めた。
論文 参考訳(メタデータ) (2023-12-10T09:11:53Z) - Multi-fidelity Bayesian Optimization in Engineering Design [3.9160947065896803]
多重忠実度最適化(MFO)とベイズ最適化(BO)
MF BOは高価なエンジニアリング設計最適化の問題を解決するニッチを見つけた。
MF BOの2つの必須成分:GP系MFサロゲートと取得機能
論文 参考訳(メタデータ) (2023-11-21T23:22:11Z) - Multi-Fidelity Bayesian Optimization with Unreliable Information Sources [12.509709549771385]
GPベースのMFBOスキームを信頼性のない情報ソースの追加により堅牢にするためのrMFBO(robust MFBO)を提案する。
提案手法の有効性を,多数の数値ベンチマークで示す。
rMFBOは、BOプロセスに様々な知識を持つ人間の専門家を確実に含めるのに特に有用であると考えています。
論文 参考訳(メタデータ) (2022-10-25T11:47:33Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
我々は、相互情報の概念に基づいて、修正されたMES取得関数を開発する。
その結果、RMESは、いくつかの合成関数ベンチマークと実世界の最適化問題において、MESよりも一貫した改善を示している。
論文 参考訳(メタデータ) (2022-02-28T08:11:02Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
複数目的のブラックボックス最適化の新たな課題を多要素関数評価を用いて検討する。
いくつかの総合的および実世界のベンチマーク問題に対する実験により、MF-OSEMOは両者の近似により、最先端の単一忠実度アルゴリズムよりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2020-11-02T06:59:04Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。