Small Object Detection for Indoor Assistance to the Blind using YOLO NAS Small and Super Gradients
- URL: http://arxiv.org/abs/2409.07469v1
- Date: Wed, 28 Aug 2024 05:38:20 GMT
- Title: Small Object Detection for Indoor Assistance to the Blind using YOLO NAS Small and Super Gradients
- Authors: Rashmi BN, R. Guru, Anusuya M A,
- Abstract summary: This paper presents a novel approach for indoor assistance to the blind by addressing the challenge of small object detection.
We propose a technique YOLO NAS Small architecture, a lightweight and efficient object detection model, optimized using the Super Gradients training framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in object detection algorithms have opened new avenues for assistive technologies that cater to the needs of visually impaired individuals. This paper presents a novel approach for indoor assistance to the blind by addressing the challenge of small object detection. We propose a technique YOLO NAS Small architecture, a lightweight and efficient object detection model, optimized using the Super Gradients training framework. This combination enables real-time detection of small objects crucial for assisting the blind in navigating indoor environments, such as furniture, appliances, and household items. Proposed method emphasizes low latency and high accuracy, enabling timely and informative voice-based guidance to enhance the user's spatial awareness and interaction with their surroundings. The paper details the implementation, experimental results, and discusses the system's effectiveness in providing a practical solution for indoor assistance to the visually impaired.
Related papers
- Object Detection and Tracking [0.0]
Project aims to integrate a modern technique for object detection with the aim of achieving high accuracy with real-time performance.
In this research, we solve the end-to-end object detection problem entirely using deep learning techniques.
arXiv Detail & Related papers (2025-02-14T17:13:52Z) - Adaptive Object Detection for Indoor Navigation Assistance: A Performance Evaluation of Real-Time Algorithms [4.80104397397529]
We evaluate four real-time object detection algorithms YOLO, SSD, Faster R-CNN, and Mask R-CNN within the context of indoor navigation assistance.
Our findings highlight the trade-offs between precision and efficiency, offering insights into selecting optimal algorithms for realtime assistive navigation.
arXiv Detail & Related papers (2025-01-30T15:56:20Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - LEAP:D - A Novel Prompt-based Approach for Domain-Generalized Aerial Object Detection [2.1233286062376497]
We introduce an innovative vision-language approach using learnable prompts.
This shift from conventional manual prompts aims to reduce domain-specific knowledge interference.
We streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training.
arXiv Detail & Related papers (2024-11-14T04:39:10Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
This study proposes a novel deep learning framework inspired by atmospheric scattering and human visual cortex mechanisms to enhance object detection under poor visibility scenarios such as fog, smoke, and haze.
The objective is to enhance the precision and reliability of detection systems under adverse environmental conditions.
arXiv Detail & Related papers (2024-10-02T04:03:07Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
We introduce a method that explicitly optimize the constraint that each object in a scene should be associated with a distinct slot.
By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance.
Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.
arXiv Detail & Related papers (2023-06-03T21:49:06Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos.
The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques.
This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T15:45:03Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.