Tera-SpaceCom: GNN-based Deep Reinforcement Learning for Joint Resource Allocation and Task Offloading in TeraHertz Band Space Networks
- URL: http://arxiv.org/abs/2409.07911v1
- Date: Thu, 12 Sep 2024 10:26:17 GMT
- Title: Tera-SpaceCom: GNN-based Deep Reinforcement Learning for Joint Resource Allocation and Task Offloading in TeraHertz Band Space Networks
- Authors: Zhifeng Hu, Chong Han, Wolfgang Gerstacker, Ian F. Akyildiz,
- Abstract summary: Tera-SpaceCom is envisioned as a promising technology to enable various space science and communication applications.
A graph neural network (GNN)-deep reinforcement learning (DRL)-based joint resource allocation and task offloading algorithm is proposed.
- Score: 11.881917133887102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terahertz (THz) space communications (Tera-SpaceCom) is envisioned as a promising technology to enable various space science and communication applications. Mainly, the realm of Tera-SpaceCom consists of THz sensing for space exploration, data centers in space providing cloud services for space exploration tasks, and a low earth orbit (LEO) mega-constellation relaying these tasks to ground stations (GSs) or data centers via THz links. Moreover, to reduce the computational burden on data centers as well as resource consumption and latency in the relaying process, the LEO mega-constellation provides satellite edge computing (SEC) services to directly compute space exploration tasks without relaying these tasks to data centers. The LEO satellites that receive space exploration tasks offload (i.e., distribute) partial tasks to their neighboring LEO satellites, to further reduce their computational burden. However, efficient joint communication resource allocation and computing task offloading for the Tera-SpaceCom SEC network is an NP-hard mixed-integer nonlinear programming problem (MINLP), due to the discrete nature of space exploration tasks and sub-arrays as well as the continuous nature of transmit power. To tackle this challenge, a graph neural network (GNN)-deep reinforcement learning (DRL)-based joint resource allocation and task offloading (GRANT) algorithm is proposed with the target of long-term resource efficiency (RE). Particularly, GNNs learn relationships among different satellites from their connectivity information. Furthermore, multi-agent and multi-task mechanisms cooperatively train task offloading and resource allocation. Compared with benchmark solutions, GRANT not only achieves the highest RE with relatively low latency, but realizes the fewest trainable parameters and the shortest running time.
Related papers
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
We propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support textitsecurity-sensitive computing task offloading.
We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints.
arXiv Detail & Related papers (2024-01-20T07:29:55Z) - Hierarchical Multi-Agent Multi-Armed Bandit for Resource Allocation in
Multi-LEO Satellite Constellation Networks [14.964082610286857]
Low Earth orbit (LEO) satellite constellation is capable of providing global coverage area with high-rate services.
We propose hierarchical multi-agent multi-armed bandit resource allocation for LEO constellation (mmRAL) by appropriately assigning available radio resources.
arXiv Detail & Related papers (2023-03-25T04:22:07Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy.
The scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver.
The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
arXiv Detail & Related papers (2022-05-04T12:00:49Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Scheduling the NASA Deep Space Network with Deep Reinforcement Learning [0.4083182125683813]
NASA's Deep Space Network (DSN) is the primary means of communications and a scientific instrument for dozens of active missions around the world.
A rapidly rising number of spacecraft and increasingly complex scientific instruments with higher bandwidth requirements have resulted in demand that exceeds the network's capacity across its 12 antennae.
This paper proposes a deep reinforcement learning approach to generate candidate DSN schedules from mission requests and spacecraft ephemeris data with demonstrated capability to address real-world operational constraints.
arXiv Detail & Related papers (2021-02-09T22:48:05Z) - Continuous Ant-Based Neural Topology Search [62.200941836913586]
This work introduces a novel, nature-inspired neural architecture search (NAS) algorithm based on ant colony optimization.
The Continuous Ant-based Neural Topology Search (CANTS) is strongly inspired by how ants move in the real world.
arXiv Detail & Related papers (2020-11-21T17:49:44Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.