論文の概要: AI-accelerated discovery of high critical temperature superconductors
- arxiv url: http://arxiv.org/abs/2409.08065v1
- Date: Thu, 12 Sep 2024 14:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:17:53.651707
- Title: AI-accelerated discovery of high critical temperature superconductors
- Title(参考訳): AIによる高温超伝導体の発見
- Authors: Xiao-Qi Han, Zhenfeng Ouyang, Peng-Jie Guo, Hao Sun, Ze-Feng Gao, Zhong-Yi Lu,
- Abstract要約: 我々は、深層モデルの事前学習と微調整技術、拡散モデル、物理に基づくアプローチを統合するAI検索エンジンを開発する。
非常に小さなサンプルセットに基づいて,AIモデルにより予測される臨界温度がT_c geq$15Kと予測された74個の動的安定材料を得た。
- 参考スコア(独自算出の注目度): 9.926621857444765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array of possibilities within the realm of materials. Here, we develop an AI search engine that integrates deep model pre-training and fine-tuning techniques, diffusion models, and physics-based approaches (e.g., first-principles electronic structure calculation) for discovery of high-$T_c$ superconductors. Utilizing this AI search engine, we have obtained 74 dynamically stable materials with critical temperatures predicted by the AI model to be $T_c \geq$ 15 K based on a very small set of samples. Notably, these materials are not contained in any existing dataset. Furthermore, we analyze trends in our dataset and individual materials including B$_4$CN$_3$ and B$_5$CN$_2$ whose $T_c$s are 24.08 K and 15.93 K, respectively. We demonstrate that AI technique can discover a set of new high-$T_c$ superconductors, outline its potential for accelerating discovery of the materials with targeted properties.
- Abstract(参考訳): 新しい超伝導材料、特に高温の超伝導材料(T_c$)の発見は、凝縮物質物理学の分野において活発な研究領域となっている。
従来のアプローチは主に、既存のデータベース内の潜在的超伝導体を探すための物理的な直観に依存している。
しかし、既知の物質は、物質の領域内での様々な可能性の表面のみを掻き傷ている。
そこで我々は,高温超伝導体発見のための深層モデル事前学習,微調整,拡散モデル,物理に基づくアプローチ(例えば電子構造計算)を統合したAI検索エンジンを開発した。
このAI検索エンジンを利用することで、非常に小さなサンプルセットに基づいて、AIモデルによって予測される臨界温度の74の動的安定物質をT_c \geq$15Kとした。
特に、これらの材料は既存のデータセットには含まれていない。
さらに,B$_4$CN$_3$およびB$_5$CN$_2$のT_c$sはそれぞれ24.08Kと15.93Kであるようなデータセットおよび個々の材料の動向を分析した。
我々は、AI技術が新しい高いT_c$超伝導体を発見できることを実証し、ターゲットとなる特性を持つ材料の発見を加速する可能性について概説する。
関連論文リスト
- The Sound of Water: Inferring Physical Properties from Pouring Liquids [85.30865788636386]
注水液の音響・視覚観測と物理の関連性について検討した。
本研究の目的は, 液位, 容器形状, 注水速度, 充填時間などの物性を自動的に推定することである。
論文 参考訳(メタデータ) (2024-11-18T01:19:37Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Foundation Model for Composite Materials and Microstructural Analysis [49.1574468325115]
複合材料に特化して設計された基礎モデルを提案する。
我々のモデルは、頑健な潜伏特性を学習するために、短繊維コンポジットのデータセット上で事前訓練されている。
転送学習中、MMAEはR2スコアが0.959に達し、限られたデータで訓練しても0.91を超えている均質化剛性を正確に予測する。
論文 参考訳(メタデータ) (2024-11-10T19:06:25Z) - Studying Critical Parameters of Superconductor via Diamond Quantum Sensors [2.8505276433658175]
我々は、複数の臨界パラメータを決定・推定するために、単一の種類の量子センサーを使用する。
ダイアモンド粒子とバルクダイアモンドを用いてマイスナー効果を探索する。
論文 参考訳(メタデータ) (2024-07-23T21:23:54Z) - Accelerating superconductor discovery through tempered deep learning of
the electron-phonon spectral function [0.0]
深層学習モデルを用いて電子フォノンスペクトル関数, $alpha2F(omega)$を予測する。
次に、サイトが提案するフォノン密度状態のドメイン知識を組み込んで、モデルのノード属性に帰納バイアスを課し、予測を強化する。
この方法の革新は、MAEを0.18、29K、28Kに減少させ、それぞれ2.1KのMAEを$T_c$とする。
論文 参考訳(メタデータ) (2024-01-29T22:44:28Z) - Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials [3.7655047338409893]
ChargE3Netは、原子系の電子密度を予測するためのE(3)等価グラフニューラルネットワークである。
本稿では,ChargE3Netが分子や材料に対する先行研究よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-08T21:56:19Z) - AI-accelerated Discovery of Altermagnetic Materials [48.261668305411845]
新たな磁気相であるオルテルマグネティズムは、強磁性と反強磁性とを区別して理論的に提案され、実験的に検証されている。
本稿では,AI検索エンジンによる自動発見手法を提案する。
金属、半導体、絶縁体をカバーする新しい50の磁気材料を発見しました。
論文 参考訳(メタデータ) (2023-11-08T01:06:48Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Investigation on Machine Learning Based Approaches for Estimating the
Critical Temperature of Superconductors [4.271684331748043]
本稿では,超伝導材料の複雑な特性を学習するために,積層機械学習手法を用いる。
他のアクセス可能な研究と比較すると、このモデルはRMSE 9.68とR2スコア0.922で有望な性能を示した。
論文 参考訳(メタデータ) (2023-08-02T17:11:50Z) - Prediction of superconducting properties of materials based on machine
learning models [3.7492020569920723]
本論文は超伝導体同定にXGBoostモデルを用いることを提案する。
深部森林モデルによる超伝導体の臨界温度の予測
ディープフォレストの最初の応用による材料のバンドギャップの予測
フェルミエネルギーレベルを予測する最初のサブネットワークモデル。
論文 参考訳(メタデータ) (2022-11-06T10:24:21Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。