Optimizing Falsification for Learning-Based Control Systems: A Multi-Fidelity Bayesian Approach
- URL: http://arxiv.org/abs/2409.08097v1
- Date: Thu, 12 Sep 2024 14:51:03 GMT
- Title: Optimizing Falsification for Learning-Based Control Systems: A Multi-Fidelity Bayesian Approach
- Authors: Zahra Shahrooei, Mykel J. Kochenderfer, Ali Baheri,
- Abstract summary: falsification problem involves the identification of counterexamples that violate system safety requirements.
We propose a multi-fidelity Bayesian optimization falsification framework that harnesses simulators with varying levels of accuracy.
- Score: 40.58350379106314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Testing controllers in safety-critical systems is vital for ensuring their safety and preventing failures. In this paper, we address the falsification problem within learning-based closed-loop control systems through simulation. This problem involves the identification of counterexamples that violate system safety requirements and can be formulated as an optimization task based on these requirements. Using full-fidelity simulator data in this optimization problem can be computationally expensive. To improve efficiency, we propose a multi-fidelity Bayesian optimization falsification framework that harnesses simulators with varying levels of accuracy. Our proposed framework can transition between different simulators and establish meaningful relationships between them. Through multi-fidelity Bayesian optimization, we determine both the optimal system input likely to be a counterexample and the appropriate fidelity level for assessment. We evaluated our approach across various Gym environments, each featuring different levels of fidelity. Our experiments demonstrate that multi-fidelity Bayesian optimization is more computationally efficient than full-fidelity Bayesian optimization and other baseline methods in detecting counterexamples. A Python implementation of the algorithm is available at https://github.com/SAILRIT/MFBO_Falsification.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
arXiv Detail & Related papers (2023-12-12T13:59:26Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Falsification of Learning-Based Controllers through Multi-Fidelity
Bayesian Optimization [34.71695000650056]
We propose a multi-fidelity falsification framework using Bayesian optimization.
This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator.
arXiv Detail & Related papers (2022-12-28T22:48:42Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive
Networks [17.370056935194786]
We propose Batch Multi-fidelity Bayesian Optimization with Deep Auto-Regressive Networks (BMBO-DARN)
We use a set of Bayesian neural networks to construct a fully auto-regressive model, which is expressive enough to capture strong yet complex relationships across all fidelities.
We develop a simple yet efficient batch querying method, without any search over fidelities.
arXiv Detail & Related papers (2021-06-18T02:55:48Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
Neural networks can learn complex, non- adversarial functions, and it is challenging to guarantee their correct behavior in safety-critical contexts.
Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures.
We propose an approach that integrates the optimization process into the verification procedure, achieving better performance than the naive approach.
arXiv Detail & Related papers (2020-10-07T08:19:48Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy.
We propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities.
We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.
arXiv Detail & Related papers (2020-07-06T23:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.