An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
- URL: http://arxiv.org/abs/2503.08555v2
- Date: Mon, 17 Mar 2025 10:10:28 GMT
- Title: An Analysis of Safety Guarantees in Multi-Task Bayesian Optimization
- Authors: Jannis O. Luebsen, Annika Eichler,
- Abstract summary: This paper addresses the integration of additional information sources into a Bayesian optimization framework.<n>The interdependencies between these information sources are modeled using an unknown correlation matrix.<n>We explore how uniform error bounds must be adjusted to maintain constraint satisfaction throughout the optimization process.
- Score: 1.534667887016089
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper addresses the integration of additional information sources into a Bayesian optimization framework while ensuring that safety constraints are satisfied. The interdependencies between these information sources are modeled using an unknown correlation matrix. We explore how uniform error bounds must be adjusted to maintain constraint satisfaction throughout the optimization process, considering both Bayesian and frequentist statistical perspectives. This is achieved by appropriately scaling the error bounds based on a confidence interval that can be estimated from the data. Furthermore, the efficacy of the proposed approach is demonstrated through experiments on two benchmark functions and a controller parameter optimization problem. Our results highlight a significant improvement in sample efficiency, demonstrating the methods suitability for optimizing expensive-to-evaluate functions.
Related papers
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.
Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.<n>We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Black-box Optimization with Simultaneous Statistical Inference for Optimal Performance [18.13513199455587]
Black-box optimization is often encountered for decision-making in complex systems management.
Our goal is to address the dual tasks of optimization and statistical inference for the optimal performance in an online fashion.
arXiv Detail & Related papers (2025-01-14T02:37:09Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
We study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation.
First, we derive a novel high-dimensional probability convergence guarantee that depends explicitly on the variance and holds under weak conditions.
We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2024-02-23T14:31:10Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
arXiv Detail & Related papers (2023-12-12T13:59:26Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
arXiv Detail & Related papers (2021-07-23T00:04:39Z) - Bayesian Joint Chance Constrained Optimization: Approximations and
Statistical Consistency [10.20554144865699]
We focus on the question of statistical consistency of the optimal value, computed using an approximate posterior distribution.
We also prove the feasibility of the approximate optimization problem.
We also demonstrate the utility of our approach on an optimal staffing problem for an M/M/c queueing model.
arXiv Detail & Related papers (2021-06-23T07:11:39Z) - Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints [44.25245545568633]
We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints.
We show that USeMOC is able to achieve more than 90 % reduction in the number of simulations needed to uncover optimized circuits.
arXiv Detail & Related papers (2020-08-16T23:34:09Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.