DEMAU: Decompose, Explore, Model and Analyse Uncertainties
- URL: http://arxiv.org/abs/2409.08105v1
- Date: Thu, 12 Sep 2024 14:57:28 GMT
- Title: DEMAU: Decompose, Explore, Model and Analyse Uncertainties
- Authors: Arthur Hoarau, Vincent Lemaire,
- Abstract summary: DEMAU is an open-source educational, exploratory and analytical tool allowing to visualize and explore several types of uncertainty for classification models in machine learning.
- Score: 0.8287206589886881
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent research in machine learning has given rise to a flourishing literature on the quantification and decomposition of model uncertainty. This information can be very useful during interactions with the learner, such as in active learning or adaptive learning, and especially in uncertainty sampling. To allow a simple representation of these total, epistemic (reducible) and aleatoric (irreducible) uncertainties, we offer DEMAU, an open-source educational, exploratory and analytical tool allowing to visualize and explore several types of uncertainty for classification models in machine learning.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Towards Understanding the Feasibility of Machine Unlearning [14.177012256360635]
We present a set of novel metrics for quantifying the difficulty of unlearning.
Specifically, we propose several metrics to assess the conditions necessary for a successful unlearning operation.
We also present a ranking mechanism to identify the most challenging samples to unlearn.
arXiv Detail & Related papers (2024-10-03T23:41:42Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data.
We review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective.
arXiv Detail & Related papers (2022-08-24T04:26:21Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
Advances and Applications [18.731827159755014]
Quantifying the uncertainty of supervised learning models plays an important role in making more reliable predictions.
Epistemic uncertainty, which usually is due to insufficient knowledge about the model, can be reduced by collecting more data.
arXiv Detail & Related papers (2021-11-03T01:22:46Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Leveraging Uncertainty from Deep Learning for Trustworthy Materials
Discovery Workflows [16.53952506314226]
We show that by leveraging predictive uncertainty, a user can determine the required training data set size necessary to achieve a certain classification accuracy.
We also propose uncertainty guided decision referral to detect and refrain from making decisions on confusing samples.
arXiv Detail & Related papers (2020-12-02T19:34:16Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.