論文の概要: Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging
- arxiv url: http://arxiv.org/abs/2409.08232v1
- Date: Thu, 12 Sep 2024 17:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 15:35:07.486303
- Title: Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging
- Title(参考訳): 磁気共鳴画像における脳腫瘍切片のモデルアンサンブル
- Authors: Daniel Capellán-Martín, Zhifan Jiang, Abhijeet Parida, Xinyang Liu, Van Lam, Hareem Nisar, Austin Tapp, Sarah Elsharkawi, Maria J. Ledesma-Carbayo, Syed Muhammad Anwar, Marius George Linguraru,
- Abstract要約: 本研究は3つの課題において,新たな腫瘍症例に対する深層学習に基づくアンサンブル戦略を提案する。
特に、最先端のnnU-NetとSwin UNETRモデルの出力を領域的にアンサンブルする。
PEDでは第1位,MENでは第3位,METでは第4位であった。
- 参考スコア(独自算出の注目度): 5.289163833023648
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Segmenting brain tumors in multi-parametric magnetic resonance imaging enables performing quantitative analysis in support of clinical trials and personalized patient care. This analysis provides the potential to impact clinical decision-making processes, including diagnosis and prognosis. In 2023, the well-established Brain Tumor Segmentation (BraTS) challenge presented a substantial expansion with eight tasks and 4,500 brain tumor cases. In this paper, we present a deep learning-based ensemble strategy that is evaluated for newly included tumor cases in three tasks: pediatric brain tumors (PED), intracranial meningioma (MEN), and brain metastases (MET). In particular, we ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a region-wise basis. Furthermore, we implemented a targeted post-processing strategy based on a cross-validated threshold search to improve the segmentation results for tumor sub-regions. The evaluation of our proposed method on unseen test cases for the three tasks resulted in lesion-wise Dice scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555, 0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively. Our method was ranked first for PED, third for MEN, and fourth for MET, respectively.
- Abstract(参考訳): マルチパラメトリック磁気共鳴画像における脳腫瘍の分離は、臨床試験とパーソナライズされた患者のケアをサポートするための定量的分析を可能にする。
この分析は、診断や予後を含む臨床的意思決定プロセスに影響を与える可能性がある。
2023年、BraTS(Brain tumor Segmentation)の課題は、8つのタスクと4500の脳腫瘍のケースで大幅に拡大した。
本稿では,小児脳腫瘍 (PED) , 頭蓋内髄膜腫 (MEN) , 脳転移 (MET) の3つのタスクにおいて, 新たに含まれた腫瘍に対して, 深層学習に基づくアンサンブル戦略を提案する。
特に、最先端のnnU-NetとSwin UNETRモデルの出力を領域的にアンサンブルする。
さらに,腫瘍部分領域のセグメンテーション結果を改善するために,クロスバリデーションしきい値探索に基づくターゲットポストプロセッシング戦略を実装した。
今回提案した3つの課題に対する検査結果から, PEDでは0.653, 0.809, 0.826, MEN:0.876, 0.867, 0.849, MET:0.555, 0.6, 0.58, 造影腫瘍では0.653, 0.809, 0.826, MEN: 0.876, 0.867, 0.849, MET: 0.555, 0.6, 0.58であった。
PEDでは第1位,MENでは第3位,METでは第4位であった。
関連論文リスト
- Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Glioblastoma Tumor Segmentation using an Ensemble of Vision Transformers [0.0]
グリオ芽腫は最も攻撃的で致命的な脳腫瘍の1つである。
Brain Radiology Aided by Intelligent Neural NETworks (BRAINNET) は、堅牢な腫瘍セグメンテーションマスクを生成する。
論文 参考訳(メタデータ) (2023-11-09T18:55:27Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
3つのコアアーキテクチャに基づく11種類のユニークなバリエーションからなるアンサンブル手法を提案する。
その結果,異なるアーキテクチャを組み合わせるアンサンブルアプローチが単一モデルより優れていることがわかった。
これらの結果は、脳腫瘍を正確に分類する上での、調整された深層学習技術の可能性を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-14T15:34:22Z) - Brain MRI study for glioma segmentation using convolutional neural
networks and original post-processing techniques with low computational
demand [0.6719751155411076]
グリオーマは、高度に異質な組織学的サブリージョンからなる脳腫瘍である。
グリオーマの多様性が高いため、このセグメンテーション・タスクは現在、医用画像解析の分野で大きな課題となっている。
畳み込みニューラルネットワーク(CNN)の設計と応用に基づくセグメンテーション手法と,計算負荷の低い元の後処理技術を組み合わせたセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2022-07-15T17:34:05Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Automatic Brain Tumor Segmentation with Scale Attention Network [1.7767466724342065]
マルチモーダル脳腫瘍チャレンジ2020(BraTS 2020)は、マルチパラメトリック磁気共鳴イメージング(mpMRI)で異なる自動アルゴリズムを比較する共通のプラットフォームを提供する
本稿では,異なるスケールで特徴写像から高レベルな意味論を取り入れた,低レベルな細部を取り入れた動的スケールアテンション機構を提案する。
術式はBraTS 2020で提供した369症例を用いて訓練し, 平均Dice similarity Coefficient (DSC) は0.8828, 0.8433, 0.8177, Hausdorff は95%, 5.2176, 17.9697, 13.4298 であった。
論文 参考訳(メタデータ) (2020-11-06T04:45:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。