論文の概要: Learning Generalized Statistical Mechanics with Matrix Product States
- arxiv url: http://arxiv.org/abs/2409.08352v1
- Date: Thu, 12 Sep 2024 18:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:37:11.441936
- Title: Learning Generalized Statistical Mechanics with Matrix Product States
- Title(参考訳): 行列積状態を用いた一般化統計力学の学習
- Authors: Pablo Díez-Valle, Fernando Martínez-García, Juan José García-Ripoll, Diego Porras,
- Abstract要約: 本稿では,標準ギブズエントロピーの代わりにTsallisエントロピーを用いて定義された一般化自由エネルギーを最小化することにより,行列積状態に基づく変分アルゴリズムを導入する。
その結果,一般化された統計力学に関連する確率分布が得られた。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a variational algorithm based on Matrix Product States that is trained by minimizing a generalized free energy defined using Tsallis entropy instead of the standard Gibbs entropy. As a result, our model can generate the probability distributions associated with generalized statistical mechanics. The resulting model can be efficiently trained, since the resulting free energy and its gradient can be calculated exactly through tensor network contractions, as opposed to standard methods which require estimating the Gibbs entropy by sampling. We devise a variational annealing scheme by ramping up the inverse temperature, which allows us to train the model while avoiding getting trapped in local minima. We show the validity of our approach in Ising spin-glass problems by comparing it to exact numerical results and quasi-exact analytical approximations. Our work opens up new possibilities for studying generalized statistical physics and solving combinatorial optimization problems with tensor networks.
- Abstract(参考訳): 本稿では,標準ギブズエントロピーの代わりにTsallisエントロピーを用いて定義された一般化自由エネルギーを最小化することにより,行列積状態に基づく変分アルゴリズムを導入する。
その結果,一般化された統計力学に関連した確率分布が得られた。
結果として得られる自由エネルギーとその勾配は、サンプリングによってギブズエントロピーを推定する標準的な方法とは対照的に、テンソルネットワークの収縮によって正確に計算できる。
逆温度を上昇させることにより,局所的なミニマに閉じ込められないようにモデルを訓練することができる変分焼鈍方式を考案した。
我々は,Isingのスピングラス問題に対するアプローチの有効性を,厳密な数値計算と準エクサクティカル近似とを比較して示す。
我々の研究は、一般化された統計物理学を研究し、テンソルネットワークを用いた組合せ最適化問題を解く新しい可能性を開く。
関連論文リスト
- Asymptotically Optimal Change Detection for Unnormalized Pre- and Post-Change Distributions [65.38208224389027]
本稿では,非正規化前および後の変化分布のみがアクセス可能である場合にのみ,変化を検出する問題に対処する。
提案手法は,最適性能を示すことが知られている累積サム統計量の推定に基づく。
論文 参考訳(メタデータ) (2024-10-18T17:13:29Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Theory on variational high-dimensional tensor networks [2.0307382542339485]
ランダムな高次元ネットワーク状態の創発的統計特性とテンソルネットワークのトレーニング可能性について検討する。
変動高次元ネットワークが大域的損失関数のバレンプラトーに悩まされていることを証明した。
この結果は、将来の理論的研究と実践的応用の道を開くものである。
論文 参考訳(メタデータ) (2023-03-30T15:26:30Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEMは、支配方程式に強制を埋め込むことによって、事前モデルの誤特定を認める。
この方法は、観測されたデータ生成過程を最小限の情報損失で再構築する。
本稿では、下層の密度共分散行列の低ランク近似を埋め込むことで、このハードルを克服する。
論文 参考訳(メタデータ) (2021-09-10T09:51:43Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z) - Stochastic Normalizing Flows [2.323220706791067]
単純な事前分布の変換を学習するために,フローの正規化が有効であることを示す。
サンプルとフローパラメータの両方をエンドツーエンドに最適化できる効率的なトレーニング手順を導出する。
いくつかのベンチマークでSNFの表現力,サンプリング効率,正当性について述べる。
論文 参考訳(メタデータ) (2020-02-16T23:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。