Probing entanglement of a continuous basis system
- URL: http://arxiv.org/abs/2409.08378v2
- Date: Wed, 09 Jul 2025 05:17:57 GMT
- Title: Probing entanglement of a continuous basis system
- Authors: Pablo C. López Vázquez, Luis M. Piñuelas, Gustavo Montes,
- Abstract summary: We propose a method to probe entanglement in a theoretically inaccessible quantum system with either a discrete or continuous basis.<n>Our approach leverages insights into the entanglement distribution within a four-partite quantum system.<n>Our findings reveal an intriguing conservative flow-like behavior in the redistribution of entanglement among subsystems, suggesting that entanglement may exhibit conservative properties in pure composite quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a method to probe entanglement in a theoretically inaccessible quantum system with either a discrete or continuous basis. Our approach leverages insights into the entanglement distribution within a four-partite quantum system, comprising two qubit-oscillator subsystems with dephasing interactions between each qubit-oscillator pair. The method involves measurements applied only to the accessible two-qubit subsystem, enabling a qualitative detection and characterization of quantum correlations in the inaccessible two-oscillator subsystem. This approach provides a novel framework for probing entanglement in continuous-basis systems where traditional measures are often inapplicable due to their complexity. Our findings also reveal an intriguing conservative flow-like behavior in the redistribution of entanglement among subsystems, suggesting that entanglement may exhibit conservative properties in pure composite quantum systems.
Related papers
- Non-perturbative switching rates in bistable open quantum systems: from driven Kerr oscillators to dissipative cat qubits [72.41778531863143]
We use path integral techniques to predict the switching rate in a single-mode bistable open quantum system.<n>Our results open new avenues for exploring switching phenomena in multistable single- and many-body open quantum systems.
arXiv Detail & Related papers (2025-07-24T18:01:36Z) - Entanglement dynamic of arbitrary number qubit in the open quantum systems [0.0]
We study the entanglement dynamics of multi-qubit systems coupled to a common dissipative environment.
Using the Lindblad master equation, we derive the time evolution of the density matrix.
We analyze the entanglement between qubit pairs via the concurrence measure.
arXiv Detail & Related papers (2025-04-13T21:23:29Z) - Identifiability of Autonomous and Controlled Open Quantum Systems [2.0971479389679333]
Open quantum systems are a rich area of research in the intersection of quantum mechanics and analysis.<n>By considering a variety of master equations, we unify multiple views of autonomous and controlled open quantum systems.<n>We formulate corresponding notions of quantum state identifiability for these systems.<n>We set the groundwork for a number of constructive approaches to the identification of open quantum systems.
arXiv Detail & Related papers (2025-01-09T14:27:15Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.<n>Our bounds are tighter than previously derived quantum TURs and KURs for single observables.<n>We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Platonic dynamical decoupling sequences for qudits [0.0]
We use a generalization of the Majorana representation for Hamiltonians to develop a simple framework that establishes the decoupling properties of each Platonic sequence.
These sequences are universal in their ability to cancel any type of interaction with the environment for single qudits with up to 6 levels.
They are capable of decoupling up to 5-body interactions in an ensemble of interacting qubits with only global pulses.
arXiv Detail & Related papers (2024-09-08T04:52:12Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Qubit-environment entanglement in time-dependent pure dephasing [0.0]
We show that the methods for quantifying system-environment entanglement can be straightforwardly generalized to time-dependent Hamiltonians.
We use these methods to study the nature of the decoherence of a qubit-oscillator system.
arXiv Detail & Related papers (2023-12-05T11:23:25Z) - Collective randomized measurements in quantum information processing [0.0]
We introduce $textitcollective$ randomized measurements as a tool in quantum information processing.
We propose systematic approaches to characterize quantum entanglement in a collective-reference-frame-independent manner.
arXiv Detail & Related papers (2023-09-19T16:43:53Z) - Generation of entanglement via squeezing on a tripartite-optomechanical
system [0.0]
We introduce a new strategy to regulate the quantum entanglement in a dispersive-hybrid system where a qubit is directly coupled to a cavity and a resonator.
Entangled qubit-cavity states are created through squeezing, even though there is no direct interaction between them.
arXiv Detail & Related papers (2023-08-01T01:16:40Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Quantum Synchronization in quadratically coupled quantum van der Pol
oscillators [0.0]
We study the quantum synchronization in two oscillator models, coupled quantum van der Pol oscillators and anharmonic self-oscillators.
We show that the considered systems exhibit a high-order synchronization through coupling in both classical and quantum domains.
We propose a possible experimental realization for the considered system in trapped ion and optomechanical setting.
arXiv Detail & Related papers (2022-07-04T11:30:42Z) - Robust measurements of $n$-point correlation functions of
driven-dissipative quantum systems on a digital quantum computer [0.0]
We propose and demonstrate a unified hierarchical method to measure correlation functions.
The time evolution of the system is repeatedly interrupted by interacting an ancilla qubit with the system.
We implement the method on a quantum computer in order to measure single-particle Green's functions of a driven-dissipative fermionic system.
arXiv Detail & Related papers (2022-04-26T15:57:22Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Trajectories without quantum uncertainties in composite systems with
disparate energy spectra [0.0]
measurement-induced quantum back action can be eliminated in composite systems by engineering quantum-mechanics-free subspaces.
The utility of the concept has been limited by the requirement of close proximity of the resonance frequencies of the system of interest and the negative-mass reference system.
Here we propose a general approach which overcomes these limitations by employing periodic modulation of the driving fields.
arXiv Detail & Related papers (2021-11-04T09:12:28Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - New type of self-oscillating systems [0.0]
An absence of equilibrium in a bosonic oscillator is discussed as a tool to create a non-stationary memory storage.
The connection between such a system and the well-known nonlinear self-oscillating systems is demonstrated.
arXiv Detail & Related papers (2021-05-11T07:29:07Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.