Robust measurements of $n$-point correlation functions of
driven-dissipative quantum systems on a digital quantum computer
- URL: http://arxiv.org/abs/2204.12400v2
- Date: Wed, 28 Feb 2024 18:51:05 GMT
- Title: Robust measurements of $n$-point correlation functions of
driven-dissipative quantum systems on a digital quantum computer
- Authors: Lorenzo Del Re, Brian Rost, Michael Foss-Feig, A. F. Kemper and J. K.
Freericks
- Abstract summary: We propose and demonstrate a unified hierarchical method to measure correlation functions.
The time evolution of the system is repeatedly interrupted by interacting an ancilla qubit with the system.
We implement the method on a quantum computer in order to measure single-particle Green's functions of a driven-dissipative fermionic system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and demonstrate a unified hierarchical method to measure $n$-point
correlation functions that can be applied to driven, dissipative, or otherwise
open or non-equilibrium quantum systems. In this method, the time evolution of
the system is repeatedly interrupted by interacting an ancilla qubit with the
system through a controlled operation, and measuring the ancilla immediately
afterwards. We discuss the robustness of this method as compared to other
ancilla-based interferometric techniques (such as the Hadamard test), and
highlight its advantages for near-term quantum simulations of open quantum
systems. We implement the method on a quantum computer in order to measure
single-particle Green's functions of a driven-dissipative fermionic system.
This work shows that dynamical correlation functions for driven-dissipative
systems can be robustly measured with near-term quantum computers.
Related papers
- Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Qubit-environment entanglement in time-dependent pure dephasing [0.0]
We show that the methods for quantifying system-environment entanglement can be straightforwardly generalized to time-dependent Hamiltonians.
We use these methods to study the nature of the decoherence of a qubit-oscillator system.
arXiv Detail & Related papers (2023-12-05T11:23:25Z) - Thermodynamics of quantum trajectories on a quantum computer [0.0]
Open-system dynamics are simulated on a quantum computer by coupling a system of interest to ancilla.
We show how to control the dynamics of the open system in order to enhance the probability of quantum trajectories with desired properties.
arXiv Detail & Related papers (2023-01-17T19:00:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Expressibility and trainability of parameterized analog quantum systems
for machine learning applications [0.0]
We show how interplay between external driving and disorder in the system dictates the trainability and expressibility of interacting quantum systems.
Our work shows the fundamental connection between quantum many-body physics and its application in machine learning.
arXiv Detail & Related papers (2020-05-22T14:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.