Qubit-environment entanglement in time-dependent pure dephasing
- URL: http://arxiv.org/abs/2312.02670v1
- Date: Tue, 5 Dec 2023 11:23:25 GMT
- Title: Qubit-environment entanglement in time-dependent pure dephasing
- Authors: Ma{\l}gorzata Strza{\l}ka, Radim Filip, Katarzyna Roszak
- Abstract summary: We show that the methods for quantifying system-environment entanglement can be straightforwardly generalized to time-dependent Hamiltonians.
We use these methods to study the nature of the decoherence of a qubit-oscillator system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the methods for quantification of system-environment
entanglement that were recently developed for interactions that lead to pure
decoherence of the system can be straightforwardly generalized to
time-dependent Hamiltonians of the same type. This includes the if-and-only-if
criteria of separability, as well as the entanglement measure applicable to
qubit systems, and methods of detection of entanglement by operations and
measurements performed solely on the system without accessing the environment.
We use these methods to study the nature of the decoherence of a
qubit-oscillator system. Qubit-oscillator entanglement is essential for
developing bosonic quantum technology with quantum non-Gaussian states and its
applications in quantum sensing and computing. The dominating bosonic
platforms, trapped ions, electromechanics, and superconducting circuits, are
based on the time-dependent gates that use such entanglement to achieve new
quantum sensors and quantum error correction. The step-like time-dependence of
the Hamiltonian that is taken into account allows us to capture complex
interplay between the build-up of classical and quantum correlations, which
could not be replicated in time-independent scenarios.
Related papers
- On the non-Markovian quantum control dynamics [2.0552363908639624]
We study open-loop control and closed-loop measurement feedback control of non-Markovian quantum dynamics.
We use the widely studied quantum cavity electrodynamics (cavity-QED) system as an example.
arXiv Detail & Related papers (2024-08-19T01:47:32Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Tracking quantum coherence in polariton condensates with time-resolved
tomography [0.22766070234899094]
We harness non-Gaussian convolutions of highly singular Glauber-Sudarshan quasiprobabilities to dynamically monitor quantum coherence in polariton condensates.
We probe the systems's resourcefulness for quantum information processing up to the nanosecond regime.
In contrast to commonly applied phase-space functions, our distributions can be directly sampled from measured data.
arXiv Detail & Related papers (2022-09-15T08:22:58Z) - Robust measurements of $n$-point correlation functions of
driven-dissipative quantum systems on a digital quantum computer [0.0]
We propose and demonstrate a unified hierarchical method to measure correlation functions.
The time evolution of the system is repeatedly interrupted by interacting an ancilla qubit with the system.
We implement the method on a quantum computer in order to measure single-particle Green's functions of a driven-dissipative fermionic system.
arXiv Detail & Related papers (2022-04-26T15:57:22Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - From Non-Hermitian Linear Response to Dynamical Correlations and
Fluctuation-Dissipation Relations in Quantum Many-Body Systems [0.0]
We propose a technique for measuring unequal-time anti-commutators using the linear response of a system to a non-Hermitian perturbation.
We relate the scheme to the quantum Zeno effect and weak measurements, and illustrate possible implementations.
arXiv Detail & Related papers (2021-04-08T18:00:06Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.