What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
- URL: http://arxiv.org/abs/2409.08775v1
- Date: Fri, 13 Sep 2024 12:34:14 GMT
- Title: What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
- Authors: Qianou Ma, Weirui Peng, Hua Shen, Kenneth Koedinger, Tongshuang Wu,
- Abstract summary: We introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting.
In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization.
Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
- Score: 26.398086645901742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompting ChatGPT to achieve complex goals (e.g., creating a customer support chatbot) often demands meticulous prompt engineering, including aspects like fluent writing and chain-of-thought techniques. While emerging prompt optimizers can automatically refine many of these aspects, we argue that clearly conveying customized requirements (e.g., how to handle diverse inputs) remains a human-centric challenge. In this work, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization. We also demonstrate that high-quality LLM outputs are directly tied to the quality of input requirements. Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
Related papers
- PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - PromptWizard: Task-Aware Prompt Optimization Framework [2.618253052454435]
Large language models (LLMs) have transformed AI across diverse domains.
Manual prompt engineering is both labor-intensive and domain-specific.
We introduce PromptWizard, a novel, fully automated framework for discrete prompt optimization.
arXiv Detail & Related papers (2024-05-28T17:08:31Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Exploring Prompt Engineering Practices in the Enterprise [3.7882262667445734]
A prompt is a natural language instruction designed to elicit certain behaviour or output from a model.
For complex tasks and tasks with specific requirements, prompt design is not trivial.
We analyze sessions of prompt editing behavior, categorizing the parts of prompts users iterated on and the types of changes they made.
arXiv Detail & Related papers (2024-03-13T20:32:32Z) - Towards Generalist Prompting for Large Language Models by Mental Models [105.03747314550591]
Large language models (LLMs) have demonstrated impressive performance on many tasks.
To achieve optimal performance, specially designed prompting methods are still needed.
We introduce the concept of generalist prompting, which operates on the design principle of achieving optimal or near-optimal performance.
arXiv Detail & Related papers (2024-02-28T11:29:09Z) - A Survey on Prompting Techniques in LLMs [0.0]
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing.
We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy.
We identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
arXiv Detail & Related papers (2023-11-28T17:56:34Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Revisiting Prompt Engineering via Declarative Crowdsourcing [16.624577543520093]
Large language models (LLMs) are incredibly powerful at comprehending and generating data in the form of text, but are brittle and error-prone.
We put forth a vision for declarative prompt engineering.
Preliminary case studies on sorting, entity resolution, and imputation demonstrate the promise of our approach.
arXiv Detail & Related papers (2023-08-07T18:04:12Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
We propose AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs.
Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings.
In zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35% relative error reduction.
arXiv Detail & Related papers (2022-02-10T04:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.