論文の概要: HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
- arxiv url: http://arxiv.org/abs/2409.09046v1
- Date: Thu, 29 Aug 2024 16:11:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:42:00.769755
- Title: HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
- Title(参考訳): HyPA-RAG:AI法と政策応用のためのハイブリッドパラメータ適応検索型生成システム
- Authors: Rishi Kalra, Zekun Wu, Ayesha Gulley, Airlie Hilliard, Xin Guan, Adriano Koshiyama, Philip Treleaven,
- Abstract要約: 本稿ではハイブリッドについて紹介する。
アダプティブRAG(Adaptive RAG, HyPA-RAG)は、AIの法と政策に合わせたシステムである。
パラメータを動的に調整することにより、HyPA-RAGは検索精度と応答忠実度を大幅に改善する。
- 参考スコア(独自算出の注目度): 2.527078412319764
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While Large Language Models (LLMs) excel in text generation and question-answering, their effectiveness in AI legal and policy is limited by outdated knowledge, hallucinations, and inadequate reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems improve response accuracy by integrating external knowledge but struggle with retrieval errors, poor context integration, and high costs, particularly in interpreting qualitative and quantitative AI legal texts. This paper introduces a Hybrid Parameter-Adaptive RAG (HyPA-RAG) system tailored for AI legal and policy, exemplified by NYC Local Law 144 (LL144). HyPA-RAG uses a query complexity classifier for adaptive parameter tuning, a hybrid retrieval strategy combining dense, sparse, and knowledge graph methods, and an evaluation framework with specific question types and metrics. By dynamically adjusting parameters, HyPA-RAG significantly improves retrieval accuracy and response fidelity. Testing on LL144 shows enhanced correctness, faithfulness, and contextual precision, addressing the need for adaptable NLP systems in complex, high-stakes AI legal and policy applications.
- Abstract(参考訳): 大規模言語モデル(LLMs)はテキスト生成や質問応答に優れるが、AI法とポリシーにおけるそれらの有効性は、複雑な文脈における時代遅れの知識、幻覚、不十分な推論によって制限される。
Retrieval-Augmented Generation (RAG) システムは、外部知識を統合することで応答精度を向上させるが、検索エラー、コンテキスト統合の貧弱、高コストに苦しむ。
本稿では,ニューヨーク地方法144(LL144)で実証されたAI法と政策に適したハイブリッドパラメータ適応RAG(HyPA-RAG)システムを提案する。
HyPA-RAGは、適応パラメータチューニングのためのクエリ複雑性分類器、密度、スパース、知識グラフメソッドを組み合わせたハイブリッド検索戦略、および特定の質問タイプとメトリクスを用いた評価フレームワークを使用する。
パラメータを動的に調整することにより、HyPA-RAGは検索精度と応答忠実度を大幅に改善する。
LL144のテストでは、複雑で高精度なAI法とポリシーの応用において、適応可能なNLPシステムの必要性に対処して、正確性、忠実性、文脈的精度の向上が示されている。
関連論文リスト
- Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:56:20Z) - Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A [15.86510147965235]
一般データ保護規則では、正確な処理情報を明確でアクセスしやすいものにする必要がある。
本稿では,その義務を果たすためのアライメント技術によって強化された,最先端の検索生成システムについて検討する。
論文 参考訳(メタデータ) (2025-02-10T16:42:00Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - AT-RAG: An Adaptive RAG Model Enhancing Query Efficiency with Topic Filtering and Iterative Reasoning [0.0]
本稿では,効率的な文書検索と推論のためのトピックモデリングを取り入れた新しい多段階RAGAT-RAGを提案する。
BERTopicを用いてクエリにトピックを動的に割り当て,検索精度と効率を向上する。
その結果,既存手法に比べて精度,完全性,妥当性が著しく向上した。
論文 参考訳(メタデータ) (2024-10-16T01:57:56Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation [37.456499537121886]
大規模言語モデルの最近の進歩はML/AI開発に変化をもたらした。
大規模言語モデルの最近の進歩は、検索・拡張生成(RAG)システムにおけるAutoMLの原則を変革している。
論文 参考訳(メタデータ) (2024-06-27T15:18:21Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。